Problem 1			Point 1
$3 \cdot 10^4 + 2 \cdot 10^2 + 4 \cdot 2$	10 =		
a) 302400	b) 32400	c) 30240	d) 3240

Problem 2			Point 1
After a 20% reductio	n the sales price of a c	ear is \$12,590. What is th	ne original price?
a) \$14,310.40	b) \$14,990.90	c) \$15,290.70	d) \$15,737.50

Problem	3							Point 1
If the avera	age (arithmetic mean) of	8, 12, 15, 21, x	and	11	is	17	then what is	x?
a) 42	b) 35	c) (17				d) 15	

Problem 4			Point 2
83,000 equals:			
a) 83.0×10^4	b) 8.3×10^4	c) 8.3×10^3	d) 83.0×10^2

Problem 5			Point 2
0 .00875 equals:			
a) 8.75×10^{-2}	b) 8.75×10^{-3}	c) 87.5×10^{-3}	d) 875×10^{-4}

Point 1

Which of the following fractions is larger than $2\frac{1}{4}$ but smaller than $2\frac{2}{5}$?

a) $2\frac{3}{8}$ b) $2\frac{1}{2}$ c) $2\frac{6}{11}$ d) $2\frac{5}{9}$

Problem 7

Χ	Y
2	5
3	10
4	17
5	26

Which of the following describes the relationship between X and Y as shown in the pairs of numbers in the table above?

a) $Y = 2X + 1$	b) $Y = X^2 + 1$	c) $Y = 3X - 1$	d) $Y = X^2 - 1$
-----------------	------------------	-----------------	------------------

Point 2

Problem 8 If $x < x^3 < x^2$,	which of the following	ng could be a value for x ?		Point 2
a) ⁵ / ₃	b) $\frac{3}{5}$	c) $-\frac{5}{2}$	d) $-\frac{2}{5}$	
Problem 9				Point 3
How many numbers statements below? Statement 1: The nu Statement 2: The nu	s between 200 and 4 umber begins with 3 umber ends with 3	00 meet one or both of the	conditions given ir	n the two
a) 60	b) 100	c) 110	d) 120	

Point 2

The average (arithmetic mean) of six numbers is 4. If the average of two of those numbers is 2, what is the average of the other four numbers?

a) 5 b) 6 c) 7 d) 8

Problem 11			Point 1
If $V = \frac{12R}{r+R}$	then $R =$		
a) $\frac{Vr}{12-V}$	b) $Vr + \frac{V}{12}$	c) <i>Vr</i> + 12	d) $\frac{V}{r-12}$

Problem 12				Point 1
3x + y = 19, an	d $x + 3y = 1$. Find	the value of $2x + 2y$.		
a) 20	b) 18	c) 10	d) 5	

Problem 13		Point 1
If x and y are integers, and y ?	3x + 2y = 13,	which of the following could be the value of

a) 1 b) 2	c) 3	d) 4
-----------	------	------

Problem 14			Point 1
If $x^2 - y^2 = 55$, and	x - y = 11, then $y = 1$	=	
a) 8	b) 3	c) -8	d) -3

Problem 15			Point	t 1
What is the simplifi (1) add $5y$ to $2x$ (2) multiply the sum (3) subtract $x + y$	ed result of following th n by 3 from the product	he steps below in order?		
a) $5x + 14y$	b) $5x + 16y$	c) $5x + 5y$	d) $3x + 12y$	

Point 1

Problem 16

Solve the following equation $\frac{2x}{3} = 8 + 4x$.

a) -2.4 b) 2.4 c) 1.3 d) -1.3

Problem 17				Point 1
If $r = 5z$ and	15z = 3y, then $r =$			
a) y	b) 2y	c) 10y	d) 15y	

Problem 18				Point 1
If $y = 3$,	then $y^3 \cdot (y^3 - y) =$			
a) 300	b) 459	c) 999	d) 648	

Problem 19				Point 1
Simplify the expression	on $\frac{(4^x + 2^{2x})}{2^x}$.			
a) 2^{x}	b) 6	c) $2 + 2^x$	d) 2^{x+1}	
Problem 20				Point 1
1100iciii 20				I UIIIU I
Simplify the expression	on $\frac{(2x^2-5x-12)}{(2x^2-4x-16)}$.			
a) $\frac{(x-6)}{2(x-2)}$	b) $\frac{(x-6)}{2(x+2)}$	c) $\frac{(2x+3)}{2(x-2)}$	d) $\frac{(2x+3)}{2(x+2)}$	

Point 2

Find the sum of all solutions of the equation $\log_2(-6x - x^2) = 3$.

a) -6 b) -8 c) 2 d) 6

If the angle is measured in grads, which of the following could be a value of x, in the diagram above?

Problem 24

a) 5

ABCD is a parallelogram. BD = 2. The angles of triangle BCD are all equal. What is the perimeter of the parallelogram?

b) 10

a) 12 b) 9 c) 8

In triangle ABC, AD = DB, DE is parallel to BC, and the area of triangle ABC is 40. What is the area of triangle ADE ?

d) it cannot bedetermined from theinformation given

a) 15

b) 10

c) 20

Problem 31			Point 1
$\sqrt{5}$ percent of	$5\sqrt{5} =$		
a) 0.5	b) 0.05	c) 0.25	d) 2.5
Problem 32			Point 1
The number of of in the day time)	degrees that the <i>hour han</i> and 2.30 in the afternoo	nd of a clock moves thro on of the same day is	ugh between noon (12 o'clock
a) 720	b) 180	c) 75	d) 60
Ducklass 22			Deine 1
The number of (decrees that the minute k	and of a clock moves th	Found 1
o'clock in the da	ay time) and 2.30 in the	afternoon of the same da	y is
a) 720	b) 1080	c) 900	d) 520
Problem 34			Point 1
If $x \bullet y = (x + x)$	$(x - y)^2 - (x - y)^2$, then	$\sqrt{5} \sqrt{5} =$	N 20
a) 5	b) 10	c) ()	d) 20

Problem 35 Point 1

If Ann is 6 years older than Sue, and John is 5 years older than Ann, and the total of their ages is 41. Then how old is Sue?

	a) 8	b) 10	c) 19	d) 21
--	------	-------	-------	-------

Problem 36			Point 2
Which of the following	is a common factor of b	both $x^2 - 4x - 5$ and	$x^2 - 6x - 7?$
a) <i>x</i> + 1	b) <i>x</i> – 1	c) <i>x</i> – 5	d) <i>x</i> -7

Problem 37	Point 2
On a map, $\frac{1}{3}$ centimeters equals 15 kilometers. The distance between two towns on a $3\frac{2}{3}$ centimeters. How many kilometers are actually between the two towns?	map is

a) 16 b) 132	c) 88	d) 165
--------------	-------	--------

Problem 38

The distance fro following <i>could</i>	m town A to town B is be the distance from A	3 kilometers. C is 6 k to C?	kilometers from B. Which	of the
a) 1	b) 7	c) 2	d) 10	

Problem 39

Point 3

Point 3

A class contains an equal number of boys and girls. The average height of the boys is 160 centimeters. The average height of the all the students is 155 centimeters. What is the average height of the girls in the class?

a) 145	b) 152	c) 150	d) 158
--------	--------	--------	--------

Problem 40							
x	and	у	are integers,	x+y<11,	and	x > 6.	What is the smallest possible value of
<i>x</i> -	- y?						

	a)	2	b) 4	c) -2	d) -4
--	----	---	------	-------	-------