
WP 014‐08  OCTOBER 2008 

 
 

Pricing Interrelated Goods in Oligopoly 

Sandro Shelegia 

The International School of Economics at Tbilisi State University (ISET) is supported by 
BP,  the Government  of Georgia,  the Norwegian Ministry  of  Foreign Affairs, Higher 
Education Support Program of  the Open Society  Institute,  the Swedish  International 
Development Agency and the World Bank. 

International School of Economics at Tbilisi State University 
16 Zandukeli Street, Tbilisi 0108, Georgia 

www.iset.ge    e‐mail:  publications@iset.ge 

IISSEETT WORKING PAPER SERIES 

 
 

http://www.iset.ge/


Pricing Interrelated Goods In Oligopoly

Sandro Shelegia∗

Department of Economics and Business

Universitat Pompeu Fabra

This Draft: July 31, 2008

Abstract

In this paper we propose a two-good model of price competition in an oligopoly
where the two goods can be complements or substitutes and each retailer has a
captive consumer base à la Burdett and Judd (1983). We find that the symmetric
Nash Equilibrium of this model features atomless pricing strategies for both goods.
When the two goods are complements the prices charged by any retailer are, at least
locally, negatively correlated so if one of the goods is priced high the other one is on
a discount. This finding is supported by an empirical observation that simultaneous
discounts of complements are infrequent. In contrast, if the goods are substitutes
or independently valued the prices will be randomized independently unless the less
valuable substitute is not sold at all. In the case of complements the retailers earn
higher profit relative to the case of selling both goods only as a bundle. The ability
to “discriminate” between the captives and the shoppers through keeping the sum
of the two prices high while setting one of the prices low drives the result. Such
discrimination is impossible when the goods are substitutes as consumers switch
to buying the lower priced substitute. Additionally, we provide some insights on
bundling in the price dispersion setting.

1 Introduction

In this paper we present a stylized model of price competition between retailers selling
two interrelated but homogeneous products. To avoid Bertrand outcome we assign
each of the competing retailers a captive group of consumers à la the second stage of
competition in Burdett and Judd (1983). We show that, in simultaneous move Nash
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Equilibrium, the retailers use purely mixed strategies for both prices leading to a price
dispersion. If the two goods are complements the prices of the two goods within every
shop will be, at least locally, negatively correlated while if they are substitutes or have
independent valuations the two prices will be randomized independently.

Theoretical literature on multiproduct price competition is relatively scarce. The
inherent difficulty lies in an ability of consumers to mix and match goods offered by
different retailers leading to a complicated pattern of choices. The modeling exercise
is further complicated if the demand for goods is interdependent. Nevertheless, several
authors have tackled the issue of a multiproduct price competition. Armstrong and
Vickers (2001) have shown that if the consumers are required to buy all the goods at one
shop (a practice usually referred to as “pure bundling”) the competition can be modeled
in terms of utility offers made by retailers and thus solved relatively easily. The aim of
this study is distinctly different: we want to analyze pricing strategies of multiproduct
retailers when, at least some, consumers are able to buy products at different shops.
This phenomena seems to be widespread (e.g. savvy shoppers who buy a TV set at one
shop and a DVD player at another) and Armstrong and Vickers (2001) do not address
it in their approach.

Some authors have modeled the multiproduct price competition in differentiated
goods where, as in our model, consumers can engage in mixing purchases between shops.
Lal and Matutes (1989) have studied price competition in a duopoly selling two indepen-
dent goods. They find that in equilibrium retailers will charge different but deterministic
prices and may even capture the entire consumer surplus of the less mobile consumers.
As opposed to our model in Lal and Matutes (1989) goods are differentiated (for some
consumers), the consumers differ in their willingness to pay and there is a economies
of scale in shopping. 1. In contrast, we assume that the two goods are homogeneous
across retailers and all the consumers have identical preferences. Such setting allows
us to analyze the interaction between the demand dependency between goods and the
information asymmetry between the consumers.2 Demand interrelation between goods
is not, in itself, sufficient to avoid pricing at the marginal cost so we introduce captive
consumers to soften price competition.

We will argue that the multidimensionality of product offering will allow retailers to
jointly discriminate between the captive consumers and the shoppers (consumers who

1Consumer heterogeneity in preferences is a standard assumption in the multiproduct literature (see
Whinston (1990), Chen (1997), Choi and Stefanadis (2001), Hosken and Reiffen (2007) and Denicolò
(2000) among others)

2In fact the information asymmetry can be made endogenous while keeping all the consumers ex ante
identical

2



are able to compare offers of several retailers and buy each good at the lowest price)
when the two goods are complements. In the Burdett and Judd (1983) model retailers
are selling only one good and thus setting only one price. As a result, while lowering it to
attract the shoppers they also lose sure profit they earn from the captives. In contrast, if
retailers are selling two complements, they can keep the sum of the two prices constant
at the joint reservation value of the two goods (thus ensuring that the profit earned from
the captives is unchanged) and lower one of the prices, engaging aggressively in a price
competition for the shoppers.

Joint discrimination is impossible if the two goods are substitutes. Unlike comple-
ments, substitutes that a retailer sells compete not only with the same goods sold by
other retailers but also with each other. As a result, the retailer cannot keep the sum
of prices equal to their joint reservation value and start decreasing one of them to com-
pete for the captives as by doing so she induces the captive consumers to buy only the
cheaper good. Not only the retailers are not able to earn additional profits through
discriminating the two groups of consumers but also they will earn lower profits than
they would if all of them were selling only the bundle. When forcing consumers to buy
both goods together retailers disallow an implicit competition between the two goods
within their store. This phenomenon is unrelated to the competition between retailers
and is also true for the monopolist selling two imperfect substitutes.

There are numerous empirical studies of the single good price dispersion (see for
example Lach (2002)) but recently Hosken and Reiffen (2004) have argued that most
of the these are incapable of fully rationalizing price distributions of individual prices.
They argue that the multiproduct approach to modeling retail pricing is the key to
understanding some aspects of retail behavior (Hosken and Reiffen (2004), p. 144).

There have been some attempts in the marketing literature to do just that (see
Mulhern and Leone (1991)). There is a consensus that when one of the complementary
goods is on sale the other one is unlikely to be discounted as well. Even thought most
of the literature does not directly document this negative relationship there are several
attempts to prove that discounting both complementary goods at the same time could
be a profitable strategy. Theoretical justification for holding sale on only one of two
complements is grounded in the monopoly paradigm: if a shop lowers a price for one
of the goods the optimal price for the other rises as the demand for it increases thus
having both goods on sale should not be optimal. It is not obvious why, in the first
place, the monopolist has to lower one of the prices from its optimal monopoly level so
the empirical literature studying price competition grounded on such theoretical bases
seems to be vulnerable to criticism. Here we attempt to provide a theoretical model that
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justifies such reasoning in the oligopoly setting where retailers, in fact, have incentive to
lower one of the prices to attract additional shoppers and also realize that the monopoly
price for the other good increases subsequently.

Relatively recently, after the availability of scanned data from supermarkets some
authors started studying the choices of individual consumers in response to price dis-
counts rather then focusing on the overall store sales. Such approach allows to separate
the effect price reduction has on the number of items individual consumer buys from
the number of consumers price reduction attracts to the shop. Moreover, it became
possible to see which goods consumers purchase together and how this behavior changes
in response to price reductions. Van den Poel et al. (2004) have studied consumer deci-
sions based on their basket of purchases and found that:“[s]imultaneous large discounts
on both main and complementary products occur rarely...” This finding is strongly in
line with the prediction of our model that when one of the products is on the deepest
discount the other one is priced high. Van den Poel et al. (2004) also find that:“[t]he
situation in which a complementary product is in promotion when the main product
is not in promotion does not occur frequently.” The “main” product is defined as the
highest sales and profit generator. In our model we find that If one of the goods is
valued much higher than the other (the case of “Intermediate Complements” in what
follows) the interval where the price of the less valuable complement is randomized can
be substantially smaller thus leading to the empirical regularity described above.

We will show that in the two-good nonsequential search model prices of the two goods
will be randomized and depending on the nature of demand interrelation we expect to
find no correlation between them if the goods are substitutes or independently valued
and negative correlation if they are complements. The latter result derives from an
inability to charge the highest price for each good simultaneously as at such pair of
prices none of the complements will be purchased at all. When deciding to carry both
substitutes the retailers are not able to charge excessive price for each of them and hence
neither of the prices is restricting the other.

The paper is organized as follows: in Section 2 we specify our model and provide
some insights on the behavior of the consumers and a monopolist, in Section 3 we solve
the oligopoly model for all the cases, in Section 4 we provide discussion of bundling and
complementarity in shopping and Section 5 we conclude.
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2 The Model

2.1 Assumptions

What follows is similar to Burdett and Judd (1983). Consider a market with N retailers
selling two homogeneous goods labeled A and B. Marginal cost of production ci (i = a, b)
is assumed to be constant, independent of a production level of the other good and equal
among the retailers. Cost of producing a bundle of one unit of each good will be denoted
by cab and is equal to ca + cb. All consumers have identical tastes and their mass per
retailer is normalized to one. The consumers demand exactly one unit of each good and
the triplet (va, vb, vab) describes their reservation prices for one unit of A, one unit of B
and a bundle composed of one unit of A and B. We will assume that the consumers
can freely dispose the goods thus vab ≥ max{va, vb} and they get utility of zero if
they do not consume anything. While identical in tastes the consumers differ in their
shopping behavior and come in two types: proportion θ of the consumers visits only
one retailer at random (we refer to these consumers as “captives”) while the rest of the
consumers (proportion 1 − θ) visit two retailers at random (to be called “shoppers”).3

The shoppers can buy each good at the lowest price they observe without paying an
extra transportation cost if they choose to buy goods at different shops. If the retailers
charge the same price for a good the shoppers will be allocated equally among them.
We allow the two goods to be asymmetric and without loss of generality we assume that

Assumption 1. vb − cb ≥ va − ca.

If Assumption 1 holds with the strict inequality we refer to B as the “more valuable”
or the “main” good.

To measure the demand interrelation between the two goods we define φ as the
number that solves vab = (1 + φ)(va + vb). The goods will be referred to as substitutes
if φ < 0, as independently valued if φ = 0 and as complements if φ > 0. Note that
the marginal contribution of each good to the value of the bundle is asymmetric when
va 6= vb. Namely, the consumer gains vab− va = (1 +φ)(va+ vb)− va = φva+ (1 +φ)vb if
she adds B to the previously purchased A and gains (1+φ)va+φvb in the opposite case.
The marginal contribution of each good defines how much can be charged for it when
bought on top of the other good and is an important consideration when the retailer
wants to induce consumer to buy both goods.

Finally, in order to simplify the treatment of border cases we assume that in the
event of indifference the consumers respect the following order: buy both goods, buy

3For now θ will be exogenously given but it can be made endogenous as in Burdett and Judd (1983).

5



only B, buy only A and do not buy anything.
Firms compete by setting prices for the two goods simultaneously and we look for

a symmetric Nash Equilibrium of this model. We will assume that retailers will not,
in addition, set a separate price for the bundle. It is equivalent to assuming that the
shoppers are able to resale the goods among each other (???). The implications for the
model when the retailers are allowed to bundle the two goods are discussed in Subsection
4.1.

2.2 Consumer Behavior and The Monopolist

Since each retailer has a monopoly power through the captive consumers, the strate-
gies employed in the oligopolistic equilibrium depend on the pricing behavior of a hy-
photetical monopolist facing the captive consumers. Before proceeding to solving the
oligopoly model we will illustrate the optimal behavior of the consumers facing any price
pair and, subsequently, profit-maximizing strategy of the monopolist. This section will
demonstrate that the pricing by the monopolist is fundamentally different depending on
whether the two goods are substitutes or complements so we shall solve the oligopoly
model for these two cases separately.

Assume a consumer can buy the goods at a price pair {pa, pb}. For the captive
consumers these are the two prices charged by the only retailer they visit while for
the shoppers each price is the minimum between the prices of each good from the two
retailers they have encountered. The consumer has a choice of buying both goods, only
A, only B and non at all and gets the surplus of vab − pa − pb, va − pa, vb − pb and 0,
respectively.

The consumer will buy both goods iff

vab ≥ pa + pb (1)

vab ≥ pa + vb (2)

vab ≥ pb + va. (3)

She will buy only good I if vi ≥ pi, vi − vj ≥ pi − pj and vab − vi ≤ pj hold at the
same time (subscript J denotes the other good). Figure 1 illustrates consumer choices
depending on the prices and the sign of φ.

If the two goods are complements the most monopolist can earn when selling both
A and B is vab− cab. In this case Inequality 1 is binding so she can charge any point on
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Figure 1: Consumer choice when the goods are a) substitutes and b) complements.
Labels A, B and A+B indicate price pairs at which the consumers buy only A, only B
and both goods, respectively. These areas are delimited with solid lines.

the line connecting x2 and x3 in Figure 1 b). It is easy to see that this pricing is only
feasible when the goods are complements. Figure 1 a) shows that If vab = pa + pb then
consumers will not buy the two substitutes together hence, the monopolist is unable to
earn vab − cab. When the monopolist aims to sell both substitutes Inequalities 2 and
3 bind and she earns (2vab − va − vb) − cab < vab − cab by charging the price pair x1.
The inability to earn vab − cab is a result of the substitutability between the goods.
When the goods are substitutes they effectively compete with each other not allowing
the monopolist to extract their joint value from the consumer.4

If the monopolist sells only one of the substitutes then she will sell B (recall As-
sumption 1). She will charge pb = vb and any pa ≥ va to earn vb − cb. Hence, if
(2vab− va− vb)− cab < vb− cb ⇐⇒ vab < vb + 1

2(va + ca) the monopolist will choose to
sell only B. In the opposite case she will sell both goods.

Having verified the pricing by the monopolist we turn to our oligopolistic model. We
will consider the complements and substitutes separately as suggested by the monopolist
pricing.

4In the Subsection 4.1 we discuss implications for the behavior of the monopolist if she can bundle
the substittues. It turns out that the monopolist can sell both goods and still earn vab−cab if she refuses
to sell the goods separately.
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3 Equilibrium

3.1 Complements

In this section we assume that vab > va + vb (φ > 0). Previously, we have demonstrated
that in this case the monopolist will charge such a pair of prices that their sum is vab
(e.g. pa = va and pb = vab − va). Incentive to undercut will make deterministic pricing
of this sort impossible in the presence of competing retailers. This pressure on prices is
downwards so any retailers will still sell both goods to the captives in equilibrium.

Proposition 1. In any symmetric Nash Equilibrium the retailers will charge only such
pairs of prices that the captive consumers buy both goods, that is Inequalities 1-3 hold.

Imagine the opposite. For simplicity assume that A is the one the captives do not
buy. It should be clear that the shoppers will not buy any good that captive do not buy
so the retailer will not sell A at all. But one can always lower the price of A to such
level that it is still above the marginal cost and the captives buy both goods, a strategy
that increases profit. In terms of Figure 1 B is the only good sold if the price point is in
region B. For any point in this region the retailer can fix the price of B and lower the
price of A before the price pair is in the region A+B. By doing so the retailer will sell
A at a price vab − vb that is more than ca thus increasing profit. More formally:

Proof. B is the only good sold to the captives iff all of the following are true

vab − vb < pa

vb − va + pa ≥ pb
vb ≥ pb.

Let the retailer, instead of pa, charge p̂a = vab − vb. It is easy to verify that at {p̂a, pb}
the captive consumers will buy both goods and p̂a+pb−cab > pb−cb so the profit earned
from the captives will increase. The shoppers were not buying A before and by lowering
its price the profit earned from them can only increase.

In the symmetric equilibrium the cumulative price distributions will be atomless
for both prices. If some price was charged with a strictly positive probability, there
would be a positive probability of a tie at that price and all the retailers would have
an incentive to charge a slightly lower price with the same probability as the old one
and serve all the shopper in case of a tie. Not only will the price distributions for each
good be atomless, there will be no gaps in the distribution thus each marginal price
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distribution will be continuous with a closed and connected support. The reason why
the distribution function will be gapless is intuitive: charging a price at the lower bound
of the gap attracts the shoppers with the same probability as the price at the upper edge
of the gap but the latter price gives higher profit. We will denote the interval where the
price of I is randomized by [p

i
, pi].

Proposition 2. In the symmetric equilibrium price for good i = a, b will be randomized
according to a continuous distribution function Fi(pi) defined over an interval [p

i
, pi].

Proof. See proofs of Propositions 3 and 8 from Varian (1980).

Next we will argue that the expected profit earned on I from charging any pi ∈ [p
i
, pi]

is equal and independent from the price charged for the other good. Imagine a retailer
charging a price pair {pi, pj}. The expected profit from charging pi for I is equal to

πi(pi) = [θ + 2(1− θ)(1− Fi(pi))](pi − ci) (4)

First we argue that either the profit from selling I is constant for all pi ∈ [p
i
, pi] or it

is strictly increasing for all pi. The expected profit cannot be decreasing with pi because
if it were then all the retailers would lower prices, a strategy that increases profit earned
on I and does not affect the profit earned on J .

Next we argue that if πi(pi) is constant for some pi then it has to be constant for
all pi. The reason is rather simple. If πi(pi) is constant for some subinterval of [p

i
, pi]

any retailer that chooses pi from this subinterval can charge any price for J from a
narrow enough interval [p

j
, p
j

+ ε]. Expected profit earned on J in that interval has to
be constant or otherwise there will be a point mass on the most profitable price in the
interval. If the profit is constant in the interval [p

j
, p
j
+ε] then retailers that charge such

pj have to be indifferent between charging any price for I or otherwise there will be a
point mass in the equilibrium distribution of pi. So if there is a subinterval in pi ∈ [p

i
, pi]

where πi(pi) is constant so it is everywhere else in this interval.
We have established that πi(pi) is either constant for all pi or strictly increasing for

all of them. If it is constant then so will be πj(pj) for all pj thus establishing what we
want to prove.

If ∂πi(pi)/∂pi 6= 0 for some pi then ∂πi(pi)/∂pi > 0. Under this condition any retailer
would find it optimal to increase pi so either pi ≤ vab − pj or pi ≤ vab − vj should bind.
We will consider each case in turn.

Take any equilibrium price pair {pi, pj}. Assume pi ≤ vab − vj binds. This means
that vj > pj . For all such pj it is optimal to charge pi and thus there is a point mass at
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pi, a contradiction.
Now assume pi ≤ vab − pj binds so pi + pj = vab. The last condition along with the

strict monotonicity of ∂πi(pi)/∂pi implies that Fi(pi) = 1 − Fj(vab − pi). Writing the
derivative of the expected profit from selling both goods with respect to the price of I
we get

∂π

∂pi
=
∂ [θ(vab − cab) + 2(1− θ) [(1− Fi(pi))(pi − ci) + Fi(pi)(vab − pi − cj)]]

∂pi
= 0⇒

⇒ 1− 2Fi(pi) +
∂Fi(pi)
∂pi

(vab − 2pi − cj + ci) = 0

Recalling ∂Fi(pi)/∂pi > 0 we conclude that if pi is less (more) than (vab − cj + ci)/2
then Fi(pi) is more (less) than 1/2. The last condition cannot hold for all pi as it implies
that Fi(pi) is more than 1/2 for pi below (vab− cj + ci)/2 and less than 1/2 for pi above
(vab − cj + ci)/2 which contradicts the monotonicity of Fi(pi). With this we show that
expected profit from selling I cannot be increasing for all pi.

Proposition 3. The expected profit earned on I from charging any pi ∈ [p
i
, pi] is con-

stant and independent from the price charged for J .

If any retailer is charging pi for I then she will not sell I to the shoppers (other
retailers will charge lower price for I with probability one). Hence, she should increase
pi until the captive consumers are indifferent between buying the two goods and either
buying only J or not buying anything at all

pi = max pi :
{

(vab − vj ≥ pi) ∩ (vab − pj ≥ pi)
}
. (5)

It is intuitive that the highest price for I will be charged along with the lowest price
for J when p

j
≥ vj . Assume the opposite so that a pair {pi, p̂j} is charged such that

p̂j > p
j

while p
j
≥ vj . The last two inequalities combined imply p̂j > vj . In the

maximization problem in Equation 5 the second restriction will bind so pi = vab − p̂j .
But then, the retailer can charge the pair {vab − p

j
, p
j
} and earn higher profit on I

without changing the profit earned on J (Proposition 3). From the last argument it
follows that if p

j
≥ vj then pi = vab − pj . If the highest price for I is restricted by the

price of J (in the sense of Equation 5) a retailer should always choose the lowest price
for J in order to increase the highest price for I as much as possible.

Proposition 4. If the lowest price for I is higher than the unit valuation for I (vi < p
i
)

then the highest price for J will be charged only with the lowest price for I.
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Now consider the case when (vj ≥ p
j
). It should be clear that if the retailer wants

to increase pi as much as possible she should always charge pi with some pj ≤ vj thus
making pi = vab − vj . If it were to charge pi with some p̂j > vj there would be a
possibility to increase profits by charging {vab − vj , vj} instead. We have established
that when p

i
≤ vi then pj = vab − vi.

The previous discussion implies that there are four possible cases when A and B are
complements:

1. p
a
≥ va and p

b
≥ vb =⇒ pa = vab− pb and pb = vab− pa. We will call this the case

of Strong Complements.

2. p
a
> va and p

b
< vb =⇒ pa = vab−vb and pb = vab−pa. Intermediate Complements

I.

3. p
a
< va and p

b
> vb =⇒ pa = vab−pb and pb = vab−va. Intermediate Complements

II, impossible due to Assumption 1.

4. p
a
≤ va and p

b
≤ vb =⇒ pa = vab − vb and pb = vab − va. Weak Complements.

Next we will consider each case separately.

3.1.1 Strong Complements

In this case p
b
> vb and p

a
> va. We will demonstrate that the last inequalities hold only

if the complementarity is strong enough (vab is large enough with respect to va + vb),
hence the name for the case. When vab is large enough retailers increase pi up to the point
when consumers are indifferent between buying both products or not buying anything
at all (vab − pa − pb = 0). The retailers never have to be concerned that by increasing
pi they may induce consumers to switch to buying only J because the prices for both of
the goods are above their individual valuations.

Using p
i
> vi (i = a, b) along with Proposition 4 gives

pa = v − p
b
, (6)

pb = v − p
a
. (7)

Since pi never attracts the shoppers and p
i

attracts them with probability one the
expected profit from charging any of this two has to be equal so

2(1− θ)(p
i
− ci) = θ(pi − ci). (8)
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Using the latter along with Equations 6 and 7 we get

pa =
1
2

[θca + (2− θ) (vab − cb)] (9)

p
a

=
1
2

[(2− θ)ca + θ (vab − cb)] (10)

pb =
1
2

[θcb + (2− θ) (vab − ca)] (11)

p
b

=
1
2

[(2− θ)cb + θ (vab − ca)] (12)

Recall that p
a
≥ va and p

b
≥ vb should hold in this case. After some algebra we are

left with

vab ≥ 2 (va − ca)
θ

+ cab

vab ≥ 2 (vb − cb)
θ

+ cab.

Assumption 1 implies that 2(va−ca)
θ + cab ≤ 2(vb−cb)

θ + cab so the restriction on unit
valuations for the case of Strong Complements is given by

2(vb − cb)
θ

+ cab ≤ vab. (13)

At this point we need to verify that the captive consumers buy both goods at all the
price pairs charged in equilibrium.

pa =
1
2

[θca + (2− θ) (vab − cb)] ≤ vab − vb (14)

pb =
1
2

[θcb + (2− θ) (vab − ca)] ≤ vab − va. (15)

These reduce to

vab ≥ 2 (va − ca)
θ

+ cab (16)

vab ≥ 2 (vb − cb)
θ

+ cab, (17)

the two conditions for the Strong Complements.
As touched upon above, we refer to this case as Strong Complements because if vab

is large enough the price for both goods will always exceed their individual reservation
values (p

i
> vi) and the price range and equilibrium strategies are independent of va and

vb. The expected profit for a retailer charging price pair {pa, pb} such that pa + pb ≤ vab
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is given by πab = πa + πb where πi (i = a, b) is given by

πi = [θ + 2(1− θ)(1− Fi(pi))] (pi − ci). (18)

Given that pa + pb ≤ vab the expected profit from selling I is constant for all pi ∈ [p
i
, pi]

and is equal to πi = θ(pi − ci). As a result, the marginal price distribution for A and B
in the symmetric equilibrium will be

Fa(pa) =
(2− θ) (2pa − vabθ − (2− θ)ca + θcb)

4(1− θ) (pa − ca) (19)

Fb(pb) =
(2− θ) (2pb − vabθ − (2− θ)cb + θca)

4(1− θ) (pb − cb) , (20)

respectively. Any joint distribution F (pa, pb) such that pa + pb ≤ vab for all price pairs
and the derived marginal distributions are Fa(pa) and Fb(pb) will form a symmetric equi-
librium. It is easy to see that number of such joint distribution functions is infinite. Here
we present the simple randomization rule available to any retailer: to randomize price of
A according to the marginal distribution function in Equation 19 and set pb according to
some monotonically decreasing function b(pa) such that the resulting marginal distribu-
tion of the price of B is exactly as in Equation 20. Such function exists and is implicitly
defined by an equation Fa(pa) = 1− Fb(b(pa)). After some manipulation one can check
that the function pa + b(pa) is decreasing at pa, increasing at p

a
(at both points it is

equal to vab) and the derivative ∂(pa+ b(pa))/∂pa changes sign only once on the interval
[p
a
, pa] thus pa + b(pa) ≤ vab for all pa ∈ [p

a
, pa]. One can introduce slight noise to the

function b(pa) and obtain some other joint distribution function which has the necessary
marginals, hence the multiplicity of such functions. Equilibrium marginal densities and
the function b(pa) are illustrated in Figure 2.

The pricing strategies for the two goods are highly dependent. There is no such
range of pa and pb that the two prices can be randomized independently in that range.
Alternatively, for any pi ∈ [p

i
, pi] the restriction pi + pj ≤ vab is binding for some pj .

When the goods are Strong Complements retailers earn expected profit of πab =
θ(2− θ) (vab − cab) that is larger than the profit they would obtain if the two goods were
sold only together (π = θ (vab − cab)). Intuition for this profit bump is the following:
when setting the sum of prices to vab the retaielrs can surely sell one of the goods to the
shoppers by setting its price low enough thus earning θ (vab − cab) from the captives and
θ(1− θ) (vab − cab) from the shoppers. If instead, they sold only the composite good, vab
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p
b

p
a

pb

vb

pava0

pa + pb = vab

←

p̄a

p̄b

b(pa)

←

f
b (p

b )

fa(pa)

Figure 2: Strong Complements. The shaded area indicates price pairs that can be
charged in equilibrium (pa + pb ≤ vab). The blue axis are the marginal densities for the
price of each good.

would be the highest price ever charged and at that price only the captives would buy the
bundle giving the retailer the profit of θ (vab − cab). As this case demonstrates when the
two goods are complements the retailers can jointly discriminate between the captives
and the shoppers and earn higher profit than when selling the two goods together.

3.1.2 Weak Complements

Here we assume that p
i
≤ vi holds for i = a, b. The goods in this section are called

Weak Complements because their individual valuation are large enough (relative to vab)
to be higher than at least some prices charged for them. Unlike the case of Strong
Complements, here the process of increasing pi stops when consumers are ready to
switch to buying only good J and this is possible because p

j
≤ vj . As vab will be shown

to have to be small enough the independent valuations (vab = va + vb) is included here
as a border case.
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Recall that (2− θ)(p
i
− ci) = θ(pi − ci) so the boundaries for prices will be given by

pb = v − va (21)

pa = v − vb (22)

p
a

=
2(1− θ)ca + θ (vab − vb)

2− θ (23)

p
b

=
2(1− θ)cb + θ (vab − va)

2− θ (24)

We impose p
a
≤ vb and p

b
≤ vb to get

va ≥ 2(1− θ)ca + θ (vab − vb)
2− θ

vb ≥ 2(1− θ)cb + θ (vab − va)
2− θ .

Rewriting in terms of vab and remembering Assumption 1 the last two restrictions reduce
to

vab ≤ (2− θ) (vb − cb)
θ

+ va + cb (25)

The marginal price distributions for A and B in the symmetric equilibrium will be
derived as in Subsection 3.1.1 using Equation 18 and we get

Fa(pa) =
pa − vabθ − ca + θca + θvb

(1− θ) (pa − ca) (26)

Fb(pb) =
pb − vabθ − cb + θcb + θva

(1− θ) (pb − cb) . (27)

The equilibrium joint distribution function should satisfy these conditions: the de-
rived marginal distributions should coincide with the two we have obtained and for all
price pairs {pa, pb} their sum should be no more than vab (pa + pb ≤ vab).

Note that when vab = va + vb, that is when goods are independent, pa = va and
pb = vb so pa + pb ≤ vab for all {pa, pb}. In this case there will be no restriction linking
the marginal pricing strategies for the two goods so in the symmetric equilibrium the
strategies can be independent and the joint distribution function is written simply as a
product of marginal distributions: F (pa, pb) = Fa(pa)Fb(pb). Figure 4 c) illustrates the
set of price pairs over which the joint distribution function is be defined along with the
marginal density functions for each good.

For any retailer the expected profit in equilibrium will be equal to πab = θ(2vab −
va − vb − cab) ≥ θ(vab − cab) and is at least as large as the profit that obtains when the
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two goods are sold as a pure bundle.

3.1.3 Intermediate Complements

Here we assume that p
b
< vb and p

a
> va. The two goods are evidently asymmetric

here and we will prove that Intermediate Complements exist only when Assumption 1
holds with strict inequality. the latter implies that B is more profitable than A fixing
the surplus obtained by consumers. This case is a mixture of the previous two in a sense
that pa is constrained by vab − vb while pb is constrained by p

a
. For this range of vab

the prices charged for A will always exceed its individual reservation price while for B
that will not be true. One can think of a laptop and a laptop bag as an example of
Intermediate Complements. Clearly in this case Assumption 1 should hold with a strict
inequality and as a result laptop bags will always be overpriced relative to their intrinsic
value (i.e. bags of similar quality and shape without a dedicated laptop functionality, a
phenomenon widely observed in practice)

We know that pb = vab − pa and pa = vab − vb. Remembering that pa attracts only
the captives and p

a
attracts shoppers with probability one we write

p
a

=
θ(vab − vb) + 2(1− θ)ca

2− θ . (28)

From the previous equation we get

pb = vab − pa =
2(1− θ) (vab − ca) + θvb

2− θ (29)

p
b

=
2(1− θ) (vabθ + 2cb − θ (ca + cb)) + θ2vb

(2− θ)2 . (30)

We impose the restrictions for this case

va <
θ(vab − vb) + 2(1− θ)ca

2− θ
vb >

2(1− θ) (θvab + 2cb − θ (ca + cb)) + θ2vb
(2− θ)2

to get
2
θ

(vb − cb) + ca + cb > vab >
(2− θ)
θ

(vb − cb) + va + cb. (31)

Note that the goods are intermediate complements only if vb−cb > va−ca. I the two
goods are equally profitable then it is impossible that only one of the goods is always
sold at a price above its individual reservation price.
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The price ranges for Intermediate Complements are illustrated in Figure 4 b). We
have already exhausted all the possible values of vab. It is trivial to show that the
case of Intermediate Complements II cannot occur. Using the same methodology as for
Intermediate Complements I conditions on vab can be derived and they are impossible
to fulfill given Assumption 1.

The marginal distribution functions for the price of A and B in the symmetric equi-
librium will be

Fa(pa) =
pa − vabθ − ca + θca + θvb

(1− θ) (pa − ca) (32)

Fb(pb) =
pb − vab(1− θ)θ − cb + θ ((1− θ)ca + cb − θvb)

(1− θ) (pb − cb) (33)

The joint distribution function should have derived marginal distributions as in the
previous two equations and for all pairs {pa, pb} pa + pb ≤ vab should hold.

Naturally we verify that the expected profit in this case are larger than when the
retailers use pure bundling.

3.2 Substitutes

In this section we assume that vab ≤ va + vb. In Subsection 2.2 we have demonstrated
that the monopolist compares 2vab − va − vb − cab and vb − cb and prices accordingly. If
vab ≥ 1

2(va − ca) + vb the prices charged will be pa = vab − vb and pb = vab − va, a price
pair at which the captive consumers buy both goods. Instead, if vab < 1

2(va − ca) + vb

the prices charged will be pb = vb and pa ≥ va and captive consumers buy only B. It
turns out that these two ranges for vab are important even when the competitors are
present. We will call the two goods Weak Substitutes when all the retailers sell both
goods which is the case when vab ≥ 1

2(va− ca) + vb. When the goods are close enough to
being independently valued, all the retailers still choose to sell them both. As the goods
become better substitutes the retailers will find it less and less profitable to sell both as
this requires lowering both prices and at some point they switch to selling only B.

When vab <
1
2(va − ca) + vb the monopolist would sell B only. We will show that in

our model only for some part of this range B is the only good sold while for the rest of
the range retailers sometimes sell both goods and sometimes only B. The former case
will be referred to as Strong Substitutes while the latter as Intermediate Substitutes.
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3.2.1 Weak Substitutes

Here we assume that in the symmetric equilibrium retailers sell both goods to the captives
with probability one. We will prove that this is the case if and only if va + vb > vab ≥
1
2(va + ca) + vb.

If all the retailers sell both goods the distribution function Fi(pi) will be atomless
and defined over a closed and connected support so price of I will be randomized over
the interval [p

i
, pi]. In order for the retailers to sell both goods it has to be true that

pa ≤ vab − vb and pb ≤ vab − va. Note that for each price the condition of selling both
goods only depends on the price of that good so provided these are true expected profit
earned on each good will be independent of the price of the other. Since the distribution
functions are atomless the shoppers will not buy the good priced at pi. So any retailer
will increase this price up to the maximum possible provided that both goods are sold,
that is:

pa = vab − vb (34)

pb = vab − va. (35)

The expected profit earned in equilibrium will be π = θ(2vab−va−vb−cab). We have
to make sure no retailer wants to deviate and sell only one of the goods. It is obvious
that if I is the only good sold then pi > pi, otherwise the retailer can decrease the price
of the other good and sell both which leads to higher profit. But if only I is sold to the
captives when pi > pi it will never be sold to the shoppers so pi = vi. If this is true the
retailer will earn θ(vb − cb). Because we want both goods to be sold in equilibrium it
has to be the case that θ(2vab − va − vb − cab) ≥ θ(vb − cb) ⇐⇒ vab ≥ 1

2(va + ca) + vb.
Now imagine that vab ≥ 1

2(va + ca) + vb. We will argue that in this case all the
retailers will choose to sell both goods. Assume the opposite so retailers in the symmetric
equilibrium sell only B with a positive probability. There will be the highest price that is
ever charged for B and it is sold to the captives while the shoppers do not buy anything.
Such highest price should be equal to vb and the profit earned will be θ(vb−cb). Charging
pa = vab − vb and pb = vab − va will give more than θ(2vab − va − vb − cab) which given
vab ≥ 1

2(va + ca) + vb is larger than θ(vb − cb) so selling only B brings strictly less profit
than selling both at a price pair {vab − vb, vab − va}.

We conclude that in equilibrium both goods are sold to the captives with the prob-
ability one iff vab ≥ 1

2(va + ca) + vb

The lowest prices any retailer will charge for A and B are the ones that attract
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shoppers with probability one and give the same profit as charging the highest price for
the good and attracting no shoppers so

p
a

=
2(1− θ)ca + θ (vab − vb)

2− θ (36)

p
b

=
2(1− θ)cb + θ (vab − va)

2− θ (37)

In equilibrium price for I (I = A,B) will be randomized in the interval [p
i
, pi]

according to the marginal distribution

Fa(pa) =
pa − θvab − ca + θca + θvb

(1− θ) (pa − ca) (38)

Fb(pb) =
pb − θvab − cb + θcb + θva

(1− θ) (pb − cb) , (39)

for A and B, respectively. The price ranges for Weak Substitutes are illustrated in
Figure 5 a).

The two prices will be randomized independently as in the case of the independent
valuations. Note that the marginal price distributions are identical to those from Weak
Complements but the joint distribution function in the latter case can never be inde-
pendent. Because the goods are substitutes there is no opportunity to “discriminate”
between the captives and the shoppers. Monopoly profit from the captives obtains only
for one price pair and subsequently the retailers do not have opportunity to keep the
monopoly sum constant while lowering one of the prices.

3.2.2 Intermediate Substitutes

In the previous section we demonstrated that both goods are always sold iff vab ≥
1
2(va − ca) + vb. So if vab < 1

2(va − ca) + vb with some probability only one good will
be bought by the captives. In this section we consider the case when probability of
selling both goods is still more than zero, albeit less than one. We will argue that in the
presence of the price competition A will never be the only good sold to the captives.

Proposition 5. When vab <
1
2(va − ca) + vb good A will never be the only good sold to

the captives.

Proof. Assume the opposite so that for some {pa, pb} A is the only good sold. There are
two possibilities: either va ≥ pa > vab−vb and then it has to be true that pb > vb−va+pa,
or vab − vb ≤ pa and then pb > vab − va. Let us consider the latter case first. As
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before, B will not be bought by the shoppers so the retailer can decrease her price to
vab− va and earn strictly higher profit by selling both goods instead of selling only A. If
va ≥ pa > vab − vb then decreasing the price of B can only induce the captives and the
shoppers to switch to buying B but will never lead to selling both goods. Assume that
the shoppers in this case were buying A with a probability λA. Since pa > vab − vb in
the case shoppers buy A they do not buy anything else from the other retailers and they
get overall surplus of va− pa. Now consider setting the price of B at vb− va + pa. Then
with the probability λA the shoppers will buy B instead of A. The expected profit will
be at least (vb− va + pa− cb)(θ+ 2(1− θ)λA) which is larger than the previous profit of
(pa − ca)(θ + 2(1− θ)λA), a contradiction.

We have established that either both goods are bought or only B is bought by
the captives. It should be clear that when retailers sell only B (pb > vab − va and
vb − pb ≥ va − pa) they will randomize pb in some interval [p̃b, vb] where p̃b > vab − va.
Charging p̃b the retailer will sell B to the captives with the same probability they would
sell both goods to them if they were to charge pa = vab − vb and pb = vab − va so
p̃b − cb = 2vab − va − vb − cab. Since p̃b > vab − va we can derive the first condition for
intermediate substitutes

vab > vb + ca. (40)

If the retailer charges the highest price for B she will only sell B and only to the captives
so pb = vb and the quilibrium profit of all the retailers is θ(vb−cb). So when pb > vab−va
the distribution function of pb is

Fb(pb) =
2pb − 2cb(1− θ)− (pb + vb)θ

2(pb − cb)(1− θ) (41)

while pa can be chosen arbitrarily provided that pa ≥ vb − va + pb. Note that the
distribution function for pb coincides with the one from a single good model.

Now we will require that p̃b ≥ θvb+2(1−θ)cb
2−θ because no retailer aiming to sell only B

would ever charge a price below θvb+2(1−θ)cb
2−θ . Hence, the second condition for Interme-

diate Substitutes is

2vab − va − vb − cab ≥ θvb + 2(1− θ)cb
2− θ ⇒ vab ≥ va + ca + 3cb

2
+
vb − cb
2− θ . (42)
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If vab is more than the maximum between vb + ca and va+ca+3cb
2 + vb−cb

2−θ then both
goods will be sold in equilibrium with a positive probability.

Now lets turn to price pairs such that the captives buy both goods. This is the case
when pa ≤ vab − vb and pb ≤ vab − va. In this case, if the price of A is such that it never
attracts the shoppers then it will be set to the maximum so pa = vab − vb. Now assume
the retailer is charging the highest price for B of those below vab − va. This price will
attract shoppers only when other retailers charge pb above vab − va so the retailer will
get the highest profit only when this price is equal to vab− va. The expected profit from
charging any price pair such that pa ≤ vab − vb and pb ≤ vab − va should be equal so for
such prices

(pa−ca) [θ + 2(1− θ)(1− Fa(pa))]+(pb−cb) [θ + 2(1− θ)(1− Fb(pb))] = θ(vb−cb). (43)

The expected profit from charging {vab − vb, vab − va} should be such that

θ(vb − cb) = [θ + 2(1− θ)(1− Fb(vab − va))] (2vab − va − vb − cab) (44)

which defines Fb(vab − va). We know that Fb(vab − va) = Fb(p̃b) and we verify that
p̃b = 2vab − va − vb − ca as derived before.

If a retailer charges pb = vab − va along with some pa ≤ vab − vb the profit earned
from selling B is equal to

θ(vab − vb − ca)(vb − cb)
2vab − va − vb − cab . (45)

The lowest price charged for B attracts shoppers with probability one and should
give the same expected profit so

p
b

=
θ(vab − vb − ca)(vb − cb)

(2− θ)(2vab − va − vb − cab) + cb. (46)

The distribution function Fb(pb) for pb ∈ [p
b
, vab − va] is defined by

(pb − cb) [θ + 2(1− θ)(1− Fb(pb))] =
θ(vab − vb − ca)(vb − cb)

2vab − va − vb − cab . (47)

If a retailer charges pa = vab − vb along with some pb ≤ vab − va the profit earned from
selling A is equal to

(pa − ca) [θ + 2(1− θ)(1− Fb(vab − va))] =
θ(vab − va − cb)(va − ca)

2vab − va − vb − cab . (48)

21



The lowest price charged for A attracts shoppers with probability one and earns the
same profit so

p
a

=
θ(vab − va − cb)(va − ca)

(2− θ)(2vab − va − vb − cab) + cb. (49)

The distribution function Fa(pa) for pa ∈ [p
a
, vab − vb] is defined by

(pb − cb) [θ + 2(1− θ)(1− Fa(pa))] =
θ(vab − vb − ca)(vb − cb)

2vab − va − vb − cab . (50)

The price ranges for Intermediate Substitutes are illustrated in Figure 5 b). Note
that for the range of parameters discussed in this subsection the oligopolistic industry
provides both goods to the captives with some probability while the monopolist would
only sell B. In this range the competition leads to a larger variety offered to consumers.

3.2.3 Strong Substitutes

In this section we consider the case when the only good sold to the captives is B (We
have established in the previous section that A cannot be the only good sold). We have
shown so far that if vab ≥ max

(
vb + ca,

va+ca+3cb
2 + vb−cb

2−θ

)
with nonzero probability

both goods are sold. As a result we consider the case when

vab ∈
[
max(va, vb),max

(
vb + ca,

va + ca + 3cb
2

+
vb − cb
2− θ

)]
.

We have shown that for such vab the retailers will choose to sell only B in the symmetric
equilibrium. The most retailer can charge for A if she aims to sell both goods to the
captives is vab− vb which is either less than the marginal cost ca or gives less profit than
charging vb and selling only B would. Hence, she will sell only B and earn expected
profit of θ(vb−cb) in the equilibrium. The equilibrium distribution of pb will be atomless
and defined over a closed interval. The highest price ever charged will never attract
shoppers so it will be equated to vb. As a result, the price of B will be randomized over
the interval [p

b
, vb] where p

b
= θvb−2(1−θ)cb

2−θ according to a distribution function

Fb(pb) =
2pb − 2cb(1− θ)− (pb + vb)θ

2(pb − cb)(1− θ) . (51)

The retailers randomize pb as if B is the only good available and charge pa such that
consumers never choose to buy A (for example pa = va). The price ranges for Strong
Substitutes are illustrated in Figure 5 c).
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4 Discussion

4.1 Bundling

Bundling refers to a practice of selling several goods together at a joint price. Pure
bundling occurs when the goods are not sold separately but only as a bundle while
mixed bundling is, as the name indicates, a strategy when the goods are offered for
sale both as separate items and as a bundle. The practice of selling individual goods
separately without bundling them is referred to as pure components.

Pure and mixed bundling is a relatively common practice in the retail industry but
by no mean is widespread for many types of goods. Its importance in preventing entry
or making it less profitable has been stressed by many authors (see Nalebuff (2004)).
Nevertheless, theoretical links between bundling and mixed strategies have not been
developed. The reason for such negligence is relatively straightforward: when retailers
use mixed or pure bundling their expected profit depends not only on the distribution
of individual prices but also on the distribution of their sum. If one adds demand in-
terrelation the analysis becomes almost intractable. Venkatesh and Kamakura (2003)
have analyzed bundling by a monopolist when consumers have uniformly distributed
valuations. When monopolist offers a mixed bundling scheme against these uniform
valuations the expected profit she gets is similar to an oligopolist in our setting pricing
against a competitor that randomizes prices. Unfortunately, in the equilibrium when
goods are complements marginal distributions are not uniform and moreover the dis-
tributions are dependent so the expected profit from mixed or pure bundling is hard
to compute (Venkatesh and Kamakura (2003) use computer simulation to compute the
profits even when valuations are uniform).

Nevertheless, some insights about bundling in our setting can be illustrated. First, let
us consider the case of independent valuations (φ = 0). Assume that one of the retailers
randomizes the two prices independently according to the distribution functions given
in equations 38 and 39. When φ = 0 these densities are identical to the Burdett and
Judd (1983) solution for individual goods. It turns out that charging only one price
for a bundle pab above but close enough to p

a
+ p

b
outperforms any pure components

strategy {pa, pb} : pi ∈ [pi, pi] (i = a, b). We know that charging any such price pair will
give equal expected profit against equilibrium strategy of the other retailers. Now let
one of the retailers instead of randomizing separately charge pab for a bundle. Figure
3 illustrates the difference between the two pricing strategies. The retailer could also
choose any of the price pairs in the grey area, namely she could choose {p

a
, pab − pa},

a price pair that gives the revenue of pab if both goods are sold. These two strategies
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lead to the same profit earned on the captives with the only difference between them
being the profit earned on the shoppers. When the prices set by the other retailer fall
into the area denoted by X both pure bundling and pure components strategies lead to
selling the two goods so the profits in this area will be identical. In the area denoted by
Y pure bundling still leads to selling both goods while pure components leads to selling
only A, the difference in profits is in favor of the pure bundling strategy and is equal
to pab − pa − cb. In the area denoted by Z pure bundling would lead to no sales while
pure components would lead to selling A. The difference in profits is in favor of the pure
components strategy and is equal to pa − ca. Choosing pab sufficiently close to p

a
+ p

b

makes the losses from pure bundling second order while the gains remain first order so
pure bundling increases profits.5

p
b

p
a

vb

pava0

pa + pb = vab

←
pb

pa + pb = pab←

X

Y

Z

←pab − p
a

pab − p
b

Figure 3: Pure bundling vs. pure components. In region X both strategies give the same
profit, in region Y pure bundling gives higher profit and in region Z pure components
gives higher profit.

Correlation between prices can change this analysis. If the other retailer positively
correlates the two prices then the pure components strategy might be a preferred one as
prices would rarely fall in the region Y . For example, if the other retailer correlates the
two prices with a monotonically increasing function then both pure bundling and pure
components give the same expected profit. Negative correlation has an opposite effect as
it makes pure bundling more attractive by making region Z unlikely. For example, in the
case of Strong Complements one of the solutions involves randomizing pa and then using

5The probability of a price pair chosen by the opponent falling into the area Z is going to zero with
a quadratic speed.
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a strictly decreasing function b(pa) to charge pb. If one examines Figure 2 it becomes
clear that any pure bundling strategy such that pab is below the lowest sum of prices of
the opponent leads to selling both goods with probability one (pab ≤ minpa{pa+b(pa)}).
But since pab > p

a
+ p

b
this strategy strictly increases profits thus making the pure

components equilibrium unsustainable.
When the goods are substitutes we have established that the monopolist would bun-

dle the goods as long as vab − vi > cj for both goods. In the oligopolistic competition
this considerations is still there. consider the case of Weak Substitutes. We showed that
both goods are sold in equilibrium and the highest price charged for I is vab − vj . Since
all the price pairs give the same profit so does {vab − vb, vab − va}. At this price point
none of the goods are sold to the shoppers. If the retailer, instead, bundles the two goods
and charges vab for the bundle she will sell it only to the captives but will earn a strictly
higher profit. Surprisingly, bundling is more powerful when the goods are substitutes
since the deviation gain can be shown to be deterministic and independent of the joint
distribution function characteristics. The kind of bundling deviation that occurs with
complements or independent goods can be resolved in the same fashion as it was with
the latter: by correlating the prices positively.

There are several way so sustain the pure components equilibrium we have solved.
Most importantly, the two goods in question can have different life-cycles leading to
existence of consumers who already own one of the goods and are shopping only for the
other. If number of such consumers is substantial the small gains that bundling brings
can be offset with losses from these consumers who will be less likely to buy a bundle.
Clearly we have not dealt with such consumers in our paper but we strongly believe
that such an extension will not change the main findings of our model while eliminating
bundling as a profitable deviation. This argument seems to be especially appealing when
the goods are substitutes, incidentally, the very case when pure bundling is known to
strictly increase profits regardless of the opponents strategy.

Furthermore, when the two goods are complements pure components equilibrium
features higher profits for all the retailers relative to the pure bundling equilibrium. If the
retail industry shares profits with the producers of these two goods in some proportional
way, none of the producers have incentive to allow bundling as that would make the
competition between retailers harsher and will lead to less profit for the industry.

Lastly, assembling goods into a bundle is a costly exercise for retailers. These costs
can outdo the small benefits the bundling brings against randomizing competitors and
sustain the pure components equilibrium. On top of the physical costs of bundling there
are costs associated with dealing with wholesalers and producers of the goods. Usually
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these entities run special promotion programs for their goods and these programs would
be hard to carry out in tandem with the other suppliers who’s good happens to be
bundled with supplier’s own good.

The considerations listed above makes us think that in many instance bundling is
not feasible or desirable strategy for a retailer and can be omitted from our analysis. We
do not wish to downplay its importance as incorporating bundling into price dispersion
literature could be an important step forward for both lines of research.

4.2 Complementarity in Shopping

The crucial assumption that allows as to solve the two-good model relatively simply is the
ability of the shoppers to combine purchases from two stores without incurring additional
cost. This assumption can be justified for internet shopping or the cases when as Stahl,
II (1989) puts it “Casual empiricism suggests that there is a non-negligible measure of
consumers who seem to derive enjoyment from shopping itself”. It is equivalent to an
assumption of costless recall in the sequential search literature as essentially the captives
find out prices at two stores and are able to “go back” if one or both prices are lower at
the first shop (see Reinganum (1979), Stahl, II (1989), Stahl, II (1996) and Robert and
Stahl, II (1993) for the models with sequential search and costless recall).

The immediate problem one faces when introducing the additional cost of buying
at two different shops is the inability to separate the pricing strategies for the two
goods in any way. The complementary in shopping does not eliminate the possibility
to discriminate the shoppers and the captives when the two goods are complements.
Rather, it gives an additional ability to do such discrimination without lowering prices
too much as the shoppers have a stronger incentive to shop at one place. We were unable
to solve our model when these costs are present as this task requires finding the marginal
distributions as well as the distribution of the sum of the two prices. It is our opinion
that solving the model presented in this paper with an additional cost t incurred by the
shoppers when they buy the two goods at different shops will add important insights
to a theoretically unfounded argument on economies of scale in shopping being a major
consideration when co-pricing goods.

5 Conclusion

We have presented a two-good price competition model where the goods are either
complements or substitutes. The model exposed substantial difference between demand
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interrelation. Namely, it was shown that if the two goods are complements retailers are
able to discriminate between the more informed consumers (the shoppers) and the less
informed ones (the captives) by enticing the former with one of the goods on a deep
discount while taxing the latter by keeping the overall price tag high. This practice
requires that the retailers are able to charge different combinations of prices that have
a fixed sum and yet induce consumers to buy both goods. Through this discrimination
the retailers are able to improve their profitability relative to selling the two goods as a
bundle. It turns out that even when the two goods are somewhat substitutable retailers
lack the above-mentioned space for maneuver and thus are incapable to discriminate
between the two groups.

In a symmetric Nash Equilibrium the prices of both goods are randomized in an
atomless fashion for the most part of the parameter space apart from the case when the
two goods are strongly substitutable in which case the less valuable good is not sold at
all. Only when the goods are either independently valued or are substitutes is it feasible
that the two prices are randomized independently. When the goods are complements
and one of the goods is priced high the other can not be priced in the upper part of
its support implying local negative correlation between the two prices. The stronger is
the complementarity between the goods the more restrictive is the price of one of them
for the other. These results are supported by some empirical studies on the pricing of
related goods.

We have also demonstrated that bundling is a particularly effective pricing strategy
against the opponent’s pure components pricing when the goods are complements hence
the opponent negatively correlates the prices. Bundling in this case gives ability to sell
both goods for sure without charging the lowest price for each of them. This effect is
grounded in the nature of the competition and is unrelated to monopoly pricing because
a monopolist can achieve maximal profit without bundling the goods. In contrast, when
the goods happen to be substitutes the opponent does not correlate prices and the appeal
of bundling is purely monopoly based as a retailer not facing any competition would still
bundle the two goods to achieve maximal profits. Surprisingly, even when the two
goods have independent demand and price of each of them is randomized independently
according to a single-good model Nash Equilibrium strategy bundling is a profitable
deviation. Unlike the other two cases correlating the two prices positively eliminates
this deviation.
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Figure 4: Permitted price pairs (pa + pb ≤ vab) in the case of strong, intermediate and
week complements are illustrated with a shaded area in a), b) and c), respectively.
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