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Task Assignment with Autonomous and

Controlled Agents∗

Florian M. Biermann† Victor Naroditskiy‡ Maria Polukarov‡

Alex Rogers‡ Nicholas R. Jennings‡

Abstract: We analyse assignment problems in which not all agents are
controlled by the central planner. The autonomous agents search for vacant
tasks guided by their own preference orders defined over subsets of the
available tasks. The goal of the central planner is to maximise the total value
of the assignment, taking into account the behaviour of the uncontrolled
agents. This setting can be found in numerous real-world situations, ranging
from organisational economics to “crowdsourcing” and disaster response.
We introduce the Disjunctively Constrained Knapsack Game and show
that its unique Nash equilibrium reveals the optimal assignment for the
controlled agents. This result allows us to find the solution of the problem
using mathematical programming techniques.

1. Introduction

Problems in economic theory are traditionally analysed in terms of stable out-
comes (equilibria) or efficient solutions (optima). In the former case, the prob-
lem is considered in the context of the interaction of rational, self-interested, au-
tonomous agents; in the latter, the agents are assumed to follow the instructions
of the central planner who aims to optimise some global objective. However, in
realistic economic systems autonomous agents are often placed together with
those controlled by the central planner; indeed, public and private sectors often
interact in jointly tackling social problems or locating economic activities. Typ-
ically, the autonomous agents will act to obtain their own individual goals, and
the problem of the central planner is to coordinate the controlled agents so as
to optimise the overall performance of the system, while taking into account the
behaviour of self-motivated participants. The present paper is offered with the
motivation to investigate such “semi-autonomous” scenarios; Section 2 outlines
multiple real-life situations which fit into this framework.

Specifically, we look at assignment problems where agents must be matched
with indivisible tasks (or goods). Some players are autonomous, and face private
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incentives to solve certain tasks; instead of submitting to the planner’s will, these
agents strive to obtain the task that rates most highly according to their own
preference rankings. For technical simplicity we assume that the central planner
(CP), who aims to maximise the value of the overall assignment (including the
contributions of the autonomous agents), assigns the controlled agents first. The
autonomous agents can only choose tasks which are left vacant by the CP. At
the end of this section will be explained why this is indeed a weak assumption.
We call this variation of the assignment problem Semi-Autonomous Assignment
Problem (SAAP).

When all agents are controlled, the SAAP turns into a classical assignment
problem.1 In the classical assignment problem, an “assignment matrix” specifies
the value obtained from each possible task-agent pair. The highest-valued as-
signment can for example be found with the Hungarian Method of Kuhn (1955).

The optimal solution of an SAAP from the point of view of the central plan-
ner corresponds to a stable matching (Gale and Shapley, 1962) in a particular
marriage market2 formed by autonomous agents and tasks. In this market, the
preferences of the autonomous agents are their rankings over tasks, while the
values of the “assignment matrix” determine the preferences of the tasks. By
assigning the controlled agents, the central planner can block some tasks and
in this way essentially determine the market in which the stable matching is
formed.

Note that the autonomous agents, amended to the classical assignment prob-
lem, are assumed to have ordinal preferences over the available tasks. This con-
siderably increases the robustness and applicability of our model. We neither
require the central planner to form a belief about cardinal utility functions
of the autonomous agents, nor do we assume the autonomous agents to be von
Neumann-Morgenstern expected utility maximisers.3 Likewise, adopting ordinal
preferences allows us to directly utilise results from a branch of game theory,
usually called matching theory, which originated with the seminal paper of Gale
and Shapley (1962).4 From the start, matching theory evolved without drawing
on the theory of expected utility offered by Neumann and Morgenstern (1944).

Finally, the seemingly strong assumption that the central planner moves first
does not affect the generality of our model. Making use of a result from matching
literature, on page 7 we argue that the order in which the autonomous agents
and the central planner make their moves does not affect the final assignment.

1Apparently, the classical assignment problem was defined first in a posthumously pub-
lished paper by Carl Gustav Jacob Jacobi, originating from the first half of the 19th cen-
tury. Moreover, Jacobi’s article (written in Latin) may have already antedated the Hungarian
Method of Kuhn (1955). For an investigation into the history of assignment problems and
further literature references, see Martello (2010).

2Technically, a marriage market is a one-to-one two-sided matching problem.
3In our model, the autonomous agents are not farsighted, which is a reasonable assump-

tions in many of the applications we have in mind (cf. Section 2). In principle, their be-
haviour could be governed by simple decision heuristics as put forward by many psychologists
(e.g. Simon (1957), Gigerenzer and Todd (2000)), as long as these heuristics give rise to linear
orderings of the alternatives (which is often not the case).

4Game-theoretic matching theory is not the same as graph-theoretic matching theory. The
classical survey of game-theoretic matching theory is Roth and Sotomayor (1990).
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This is true as long as it is at the disposal of the central planner to replace
autonomous agents who occupy tasks by controlled agents, an assumption not
too unrealistic for those applications we describe in Section 2. If two autonomous
agents compete for one vacant task, the task is granted to the agent who is better
at performing the task.

The rest of the paper is organised as follows. Section 2 motivates our work by
describing several real-life situations which resemble SAAPs. The model is then
formally defined in Section 3. Section 4 introduces Disjunctively Constrained
Knapsack Games (DCKG) and proves that the unique Nash equilibrium of
a DCKG corresponds to an optimal assignment of an underlying SAAP. In
Section 5, we show that the Nash equilibrium of a DCKG can be characterised
as the solution of a bilevel mathematical program. We conclude in Section 6
with directions for future work.

2. Real-world examples

Semi-autonomous assignment problems arise naturally in the context of loca-
tion of economic activities. In Koopmans and Beckmann (1957), for example,
the authors discuss the assignment problem in the context of choosing locations
for industrial plants under the standard assumption that the central planner is
responsible for choosing location for all of the plants. However, in reality such
tasks are typically divided between the public and the private sectors, where
private businesses strive to maximise their own profits and the government is
concerned with the overall welfare of the society. Note also that state institu-
tions often have the priority over private entrepreneurs in making their choices,
consistent with the assumptions of our model.

As another example, consider private-public partnerships (PPP), where the
public party, which usually supervises the complete project, intends to advance
some public goal. In contrast, the participating private parties are primarily in-
terested in those subprojects which have commercial potential. This poses an ob-
stacle for assigning tasks in a globally optimal way. Companies will try to avoid
those tasks which are unprofitable and difficult, trying instead to obtain sub-
projects promising high profits at low risk. A typical example is the provision of
health care through hospitals and doctors, which is facilitated through private-
public partnerships in many countries.5 The payment agreements between the
government and the private partners usually do not reimburse a hospital or doc-
tor for exactly those costs associated with a specific patient. As a result, patients
(= “tasks”) yield different profit opportunities. Although hospitals/doctors (=
“agents”) participating in a PPP are not formally entitled to pick the profitable
patients and reject the others, there may be informal ways to deter unprofitable

5For an overview of private-public partnerships in the health sector, see Nikolic and
Maikisch (2006).
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patients.6 The model presented in this paper could thereby prescribe an optimal
policy for a public health system which both directly employs medical resources
(doctors, hospitals etc.) and engages private contractors.

In the Internet economy, the so-called crowdsourcing systems (see, e.g., Ben-
kler (2006); Brabham (2008); Howe (2008)) can also be modelled with SAAPs.
In a crowdsourcing system, tasks which cannot satisfactorily be solved without
human expertise are assigned to a group of more or less anonymous amateur
problem solvers (the “crowd”). Yet companies making use of crowdsourcing do
not have to totally rely on the crowd. For some of the tasks or even for all of
them, they can engage professional problem solvers. These belong to their own
personnel or a contractor’s personnel who cannot reject tasks assigned to them.
In contrast, crowd members can freely choose which tasks to work on, and they
are probably not indifferent between all tasks. Hence, the firm has to find an
optimal way of distributing its tasks between professional and amateur problem
solvers.

Disaster response situations providing prominent examples of crowdsourc-
ing can also be analysed with our model. Consider a disaster relief situation
where professional disaster responders coordinated by the government are as-
sisted by local residents and disaster survivors. The government has neither the
communication capabilities nor the authority to tell local participants what to
do. However, local participants are very helpful and their efforts should not be
ignored. Assuming the government can estimate the preferences of local par-
ticipants (e.g., they visit sites in order of distance from their home), our work
provides a way for the government to assign professional disaster responders
optimally.

Finally, autonomous task choice can even be observed in military organisa-
tions, which are famous for their strict adherence to the principle of obeying
orders.7 If solving critical tasks is “prestigious” in some sense, there may be
an incentive for players to unilaterally go for those critical tasks, disregarding
the assignment the central planner would prefer. In military history it regu-
larly occurred that ambitious commanders tried to gain fame by acting more
bravely or by taking greater risks than desired by the central command. An
outstanding example is the celebrated Danish naval officer Peter Jansen Wessel
(1691-1720), called Tordenskjold (Danish for “thunder shield”). He constantly
strived for the most prestigious tasks in the Great Northern War (1700-1721),

6By entering “hospital turns away” or a similar phrase into an internet search engine, one
gets plenty of media reports about exactly this issue. For example, UK dentists, working for the
National Health Service, arguably behaved in such a way (Templeton, 2007). Reports about
hospitals being reluctant to examine patients with X-ray or brain scans may straightforwardly
be interpreted as avoidance of unprofitable tasks.

7Situations resembling SAAPs can be found not only within military organisations. The
2011 war in Libya was fought by a coalition of NATO and loosely organised rebel troops who
jointly tried to overthrow the regime of dictator Muammar Gaddafi. While the NATO forces
were totally coordinated, it was arguably difficult to coordinate the actions of the rebels, who
were untrained, unprofessional, and lacked command chains. Consequently, the NATO, as the
central planner of the SAAP, had to anticipate the prospective actions of the rebels when
making its decisions on air strikes.
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thereby notoriously disobeying orders.8 His confrontation with the Swedish fleet
in the Battle of Dynekilen (1716) in which his 7 ships captured 31 Swedish ships
and destroyed another 13, was not backed by orders of the admiralty.9 Wes-
sel’s anarchistic conduct evoked considerable criticism in the Danish admiralty,
eventually leading to a trial at a court-martial. Yet he was acquitted and even
made an admiral later.10 His disobedience yielded huge personal prestige, as can
be seen from the fact that Wessel is praised in the national anthems of both
Denmark and Norway (the country he originated from).

3. Semi-Autonomous Assignment Problems

Before formally defining our model, let us first recall the definition of a classical
Assignment Problem (AP). An AP is defined by a triple (A, T, v), where A is
a set of agents, T is a set of tasks, and v is an evaluation function which maps
A × T into R+ ∪ {0}. The problem is to find an assignment (or, matching) of
agents to tasks for which the sum of the values of pairs matched is maximised.
Formally, an assignment µ is a subset of A× T such that no two distinct pairs
in µ share a player or a task, that is:

(a, t), (â, t̂) ∈ µ : (a, t) 6= (â, t̂)⇒ a 6= â ∧ t 6= t̂.

The objective of the central planner is then given by

max
µ∈µ

∑
(a,t)∈µ

v((a, t)),

with µ being the set of all assignments which can be formed from the set A×T .
We now generalise the AP model to what we call the Semi-Autonomous

Assignment Problem (SAAP). An SAAP is defined by a tuple

(C ∪ F, T, v,�F ),

where C and F are two disjoint sets, and we set A := C ∪ F . As before, we
refer to the elements of A as agents (or, players), while the members of C are
termed coordinated (or, controlled) and the members of F are referred to as free
(or, autonomous). The function v is defined as before, and �F is a preference
profile which contains, for each free agent f ∈ F , a linear preference order11 �f
defined over a set Tf ⊆ T . The tasks in Tf are interpreted to be those which
can be accomplished by f . Given this, the central planner of an SAAP aims to
find

max
µ∈µSAAP

∑
(a,t)∈µ

v((a, t)),

8For an account of his deeds, see Chapter 1 (“A Knight Errant of the Seas”) in Riis (2007).
9“He could not go back and ask for permission, and one may shrewdly guess that he did

not want to, for it would certainly have been refused.” (Riis (2007), p. 10).
10Cf. Riis (2007), pp. 6 and 9.
11A linear ordering is irreflexive, asymmetric, and transitive.
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where µSAAP is the set of SAAP-feasible assignments defined next.
First, we have to specify the behaviour of the free players, i.e. the way in

which they allocate themselves to tasks. For simplicity, we assume ties do not
arise:

(a, t), (â, t̂) ∈ A× T : (a, t) 6= (â, t̂)⇒ v((a, t)) 6= v((â, t̂)) (3.1)

and
µ, µ′ ∈ µ : µ 6= µ′ ⇒ v(µ) 6= v(µ′), (3.2)

with v(µ) :=
∑

(a,t)∈µ v((a, t)).
The search process of the free players proceeds as follows: after the coordi-

nated agents were assigned to tasks by the central planner, each free agent f
approaches the task t := max�f

Tf . If f finds t to be vacant, f takes over t.
If f finds that a coordinated player already occupies t, f proceeds to the task
which is second according to the preferences �f , namely t′ := max�f

Tf \ {t}.
Again, f checks the availability of t′ and either takes it or continues with the
subsequent item in its priority list. If there are no tasks left on f ’s priority list
which were not yet approached, f stays idle.

For two free players f ′ and f ′′ it may be the case that Tf ′ ∩Tf ′′ 6= ∅. So what
happens if f ′ and f ′′ approach the same task t? In this case, we assume that
the agent preferred by the task (i.e., better at performing the task)

arg maxa∈{f ′,f ′′} v((a, t))

keeps to t, while the other free agent continues the search process. This is a
realistic assumption for scenarios in which free players, though being uncoor-
dinated, have an interest in a high-valued solution of the problem (like in the
disaster response application outlined in Section 2). However, our optimality
result could be adjusted if another tie-breaking rule would be used instead.

We call this procedure the Deferred Acceptance Algorithm with Blocked Tasks
(DAB). In the appendix we include a formal description of the algorithm and
prove that it is finite and produces a unique output (see page 16). We now turn
to discuss some of its important properties.

Consider the Deferred Acceptance Algorithm of Gale and Shapley (1962) that
constructs a stable matching in a marriage market. A marriage market is defined
as a triple (M,W,�), where M is the set of “men” and W is the set of “women”.
A preference profile � maps each m ∈M into a linear preference order defined
over W ∪ {m}, and each w ∈ W into a linear preference order defined over
M ∪ {w} (the item x in x’s preference order stands for the option of being
single).12 In terms of SAAP, let the tasks stand for the women and the free agents
stand for the men. Then, the DAB search process coincides with the Deferred
Acceptance Algorithm of Gale and Shapley (1962), executed in a restricted
marriage market which does not include the controlled agents and the tasks
they occupy. In this market, the preferences of the free agents are given by
their preferences over subsets of tasks. All tasks which are not in the set Tf are

12For a comprehensive discussion of marriage markets see Roth and Sotomayor (1990),
chapter 2.
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considered unacceptable for f . The preferences of tasks over agents are given by
the value function v: a task t prefers f ′ over f ′′ iff v((f ′, t)) > v((f ′′, t)). The
definition of a stable matching in this context is postponed to the end of this
section (as we do not need it for the definition of the set µSAAP).

The order in which the free players propose to tasks, and the order in which
they are rejected, does not influence the outcome assignment as the DAB proce-
dure leads to a unique outcome. This was shown by McVitie and Wilson (1971),
who modified the original algorithm of Gale and Shapley (1962) so as to let men
propose to women sequentially and in an arbitrary order (in Gale and Shapley
(1962), the men propose simultaneously at each stage). They proved that the
matching resulting from their algorithm is identical to the one generated by
the standard deferred acceptance algorithm. Remarkably, this finding of McVi-
tie and Wilson (1971) also implies that the outcome of the DAB algorithm is
not affected by our assumption that the central planner assigns the coordinated
agents first; in the DAB search process, the output matching would be the same
even if the CP would assign the controlled agents when the free agents were
already searching in the market. This is true as long as the coordinated agents
could take away any task already occupied by a free agent, an assumption we
think is not too unrealistic for those applications we described in Section 2.
However, for ease of exposition, we will keep our assumption.

We define a coordinated assignment to be a matching µC ⊆ C × T (no free
player f is a member of any pair in µC). Similarly, a free assignment is a
matching µF ⊆ F × T (no coordinated player c is a member of any pair in µF ).
We denote by (F, T,�F )µC

a marriage market formed by free agents and those
tasks which are not matched under µC . Formally,

(F, T,�F )µC
= (F, T \ {t | (c, t) ∈ µC},�F ).

Given this, the set µSAAP consists of the following assignments:

Definition 1. An assignment µ is SAAP-feasible for a semi-autonomous as-
signment problem (C ∪F, T, v,�F ) if µ = µF ∪µC and the matching µF is the
outcome of the DAB algorithm in the market (F, T,�F )µC

.

Let µF be a free assignment in a marriage market (F, T,�F )µC
. We say that

µF is stable if it has no blocking pairs as defined below:

Definition 2. A blocking pair for a free assignment µF in a marriage market
(F, T,�F )µC

is a pair (f, t) ∈ F × (T \ {t | (c, t) ∈ µC}) with t ∈ Tf , and one
of the following four cases is fulfilled:

1. f is unmatched under µF , and t is matched to an agent f ′ with v((f, t)) >
v((f ′, t)).

2. t is unmatched under µF and f is matched to a position t′ with t �f t′.
3. t and f are unmatched under µF .
4. f and t are matched to t′ and f ′ respectively with v((f, t)) > v((f ′, t)) and

t �f t′.
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4. Disjunctively Constrained Knapsack Games

Given the above description of SAAP, we now characterise its solution as the
unique Nash equilibrium of a two-player constant-sum game, termed the Dis-
junctively Constrained Knapsack Game (DCKG). This allows us to formalise
the decision situation faced by the central planner as a max-min optimisation
problem as in Neumann (1928). In the following section, we will then set up
a mathematical program which identifies the unique Nash equilibrium of this
game.

Besides being instrumental for deriving the program, the game representation
of SAAP nicely reveals the problem’s inner structure. Its formulation as a math-
ematical program then becomes natural and immediate. A similar approach has
previously been used for a classical assignment problem. In Neumann (1953), a
two-person zero-sum game was proposed where one player selects a field (a, t)
in a checkerboard of n rows and n columns, and the other player guesses either
the row a or the column t in which this field is found. It was shown that in an
equilibrium the first player’s strategy is a probability distribution that assigns
positive probabilities to the pairs in an optimal assignment. We note however,
that the DCKG model we present in this paper is rather different (and this
difference is reflected in its mathematical programming formulation), in that it
is more involved than the classical model.13

Consider the following game in extensive form, played between the CP and
its adversary AD (a “Stackelberg game”). The CP and the AD have to jointly
fill a knapsack. The CP moves first and chooses a subset µC of elements from
the set C × T to be put into the knapsack. Afterwards, the AD chooses a set
µF from the set F × T to be put into the knapsack, but AD must obey the
restriction that µF is a stable matching in the market (F, T,�)µC

. That is, the
CP has the strategy set SCP = µC , while the AD’s strategy set is given by:

SAD = {s : µC → µF | s(µC) is a stable matching in (F, T,�F )µC
},

where µC and µF denote the sets of coordinated and free assignments of a given
SAAP, respectively. Verbally, an element of SAD is a function s which maps each
choice µC ∈ µC of the CP into a reply µF := s(µC) ∈ µF of the AD, and s
must be such that µF is a stable matching in (F, T,�F )µC

.
The game is constant-sum. While the CP wants to maximise the value of the

knapsack, which is given by

v(µC ∪ µF ) =
∑

(a,t)∈µC∪µF

v((a, t)),

the AD wants to minimise that value.14

We call this game a Disjunctively Constrained Knapsack Game (DCKG), be-
cause it has an obvious connection to the Disjunctively Constrained Knapsack

13See Section 5 for a detailed discussion.
14For example, set the payoffs of the players as v(µC ∪ µF ) for the CP and −v(µC ∪ µF )

for the AD. The resulting game is zero-sum.
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Problem15 (cf. Yamada et al. (2002)).16 We show that the unique Nash equilib-
rium of this game determines the coordinated assignment µ∗C which maximises
the objective function of the corresponding SAAP.

Proposition 1. A DCKG has a unique Nash equilibrium (µ∗C , µ
∗
F ). For µ∗ :=

µ∗C ∪ µ∗F holds µ∗ ∈ µSAAP, with µSAAP being the set of matchings feasible for
the underlying SAAP. Moreover,

µ∗ ∈ arg maxµ∈µSAAP

∑
(a,t)∈µ

v((a, t)).

Proof. The fact that a DCKG has a unique Nash equilibrium follows from condi-
tion (3.2) on page 6 and the fact that in a constant-sum game, all Nash equilibria
yield the same payoff vectors.17

For proving the second statement, we first show that for any strategy µC
played by the CP, the free matching generated by the DAB algorithm (on page
16) is a best response of the AD. Take µC as given, and let µF [µC ] denote
the free assignment constructed by the DAB algorithm in the marriage market
(F, T,�F )µC

. As the DAB algorithm coincides with the Gale-Shapley algorithm
in the market (F, T,�F )µC

(with free agents proposing), the matching µF [µC ]
is the free agent optimal stable matching in the marriage market (F, T,�F )µC

.
This means that all free agents find µF [µC ] at least as good as any other stable
matching in the market (F, T,�F )µC

. It is a well-known result in matching
theory that the optimal stable matching for the proposing side coincides with
the worst stable matching of the responding side.18 Hence µF [µC ] is the worst
stable matching for the tasks, i.e. all tasks are at least as well off under any
other stable matching in (F, T,�F )µC

. As any task t prefers f ′ over f ′′ iff
v((f ′, t)) > v((f ′′, t)), this means that for any other stable matching µ̂F in the
market (F, T,�F )µC

holds∑
(f,t)∈µ̂F

v((f, t)) >
∑

(f,t)∈µF [µC ]

v((f, t)).

Therefore µF [µC ], the matching constructed by the DAB algorithm, is a best
reply to µC . As µC was chosen arbitrarily, the DAB algorithm constructs the
best reply for any choice of the CP. So if µ∗C , µ

∗
F is the unique Nash Equilibrium

of the DCKG, then µ∗F = µF [µ∗C ]. By Definition 1 on page 7 it holds that

15Also referred to as Knapsack Problems with Conflict Graphs (cf. Pferschy and Schauer
(2009)).

16The decision problem of the CP could also be interpreted to be a Max-Min 0-1 Knapsack
Problem (cf. Yu (1996)). In that interpretation, each of the AD’s strategy choices would be
one of the “scenarios” that the CP faces. Furthermore, the DCKG resembles the Knapsack
Sharing Problem (KSP) as it was defined by Yamada and Futakawa (1997) (there is an earlier,
less general definition by Brown (1979)). In both the KSP and the DCKG, different parties
have to fill the knapsack. However, both models differ in many other aspects, for example in
their objective functions.

17See, for example, Osborne and Rubinstein (1994), Proposition 22.2(b) on p. 22.
18See, for example, Knuth (1997), p. 13, or Roth and Sotomayor (1990), Theorem 2.13 and

Corollary 2.14, p. 33.
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µC ∪ µF [µC ] ∈ µSAAP for all coordinated matchings µC . Thus µ∗C ∪ µF [µ∗C ] ∈
µSAAP, implying µ∗C ∪ µ∗F ∈ µSAAP.

Finally, if there was another matching µ̂C with∑
(a,t)∈µ̂C∪µF [µ̂C ]

v((a, t)) >
∑

(a,t)∈µ∗C∪µF [µ∗C ]

v((a, t)),

then µ∗C would be no best reply against the strategy of AD (a strategy of the
AD specifies a reply matching µF for every coordinated matching chosen by
the CP). CP could obtain a better payoff by switching from strategy µ∗C to µ̂C .
As we assumed µ∗C , µ

∗
F to be a Nash equilibrium, this is impossible. Therefore

µ∗ := µ∗C ∪ µ∗F solves the problem maxµ∈µSAAP

∑
(a,t)∈µ v((a, t)).

Now, for a zero-sum game with player set {1, 2}, strategy sets S1 and S2,
and payoff functions p1 := p(x ∈ S1, y ∈ S2) and p2 := −p(x ∈ S1, y ∈ S2),
Neumann (1928) shows that player 1 has to solve the problem

max
x∈S1

min
y∈S2

p(x, y).

If we apply this general form to our problem, we get the formulation

max
µC∈SCP

min
µF∈SAD

∑
(a,t)∈µC∪µF

v((a, t)).

Removing the definitions of the action sets from the objective function and
taking care of them through constraints, we obtain:

max
µC⊆C×T

min
µF⊆F×T

∑
(a,t)∈µC∪µF

v((a, t))

s.t. (4.1)

µC ∪ µF must be a matching.

µF must be a stable matching in (F, T,�F )µC
.

The problem in (4.1) is stated informally. In the following section, we translate
it into a form which can be tackled with mathematical programming techniques.

5. Mathematical program for computing the DCKG equilibrium

In this section, we formulate a mathematical program for finding the Nash equi-
librium of a DCKG. An economic problem of a two-person Stackelberg game
is a typical bilevel optimisation problem—a hierarchical program in which the
set of constraints contains a parametric optimisation problem. In other words,
the response of the lower level problem faced by the follower (in our case, AD)
depends on the decision of upper-level problem of the leader (CP). Mathemati-
cally, this means that the set of decision variables can be divided into two parts
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x and y, with x corresponding to the strategy of the upper level problem and y
representing the response of the lower level problem parameterised in x.

Let us define the control variables. Set M = T ∪ A ∪ (A × T ) and define
for each m ∈ M a variable x(m) ∈ {0, 1}. We denote the set of variables
(x(m))m∈M by x, and we denote a specific configuration19 of the control vari-
ables (a “realization”) by x̄. Each x̄ is associated with a set µ(x̄) ⊆ A × T
defined as

µ(x̄) = {(a, t) ∈ A× T | x̄((a, t)) = 1}. (5.1)

We now set up restrictions on x which make sure that for every possible value
x̄ of x the set µ(x̄) is indeed an assignment. For each t ∈ T , define a set

Mt := {t} ∪ {(a, t̂) ∈ A× T | t̂ = t}

which contains t and all pairs in A × T of which t is a member. Similarly, for
each a ∈ A, define

Na := {a} ∪ {(â, t) ∈ A× T | â = a}

to be the set containing a and all pairs in A× T of which agent a is a member.
The following two conditions on x ensure that for any configuration x̄ of x, the
set µ(x̄) is an assignment:

∀t ∈ T :
∑

m∈Mt

x(m) = 1 (5.2)

∀a ∈ A :
∑
m∈Na

x(m) = 1 (5.3)

These restrictions obviously prevent any task or any agent from being a member
of more than one pair in µ(x̄). Recall that t ∈ Mt and a ∈ Na. So (5.2)
makes sure that for any configuration of variables x̄ holds x(t) = 1 iff in the
matching µ(x̄) the task t is not occupied by any agent. Likewise, by (5.3), for
any configuration of variables x̄ it holds x(a) = 1 iff in the matching µ(x̄) the
agent a is unmatched. This will be important in what follows now.

We must ensure that for any x̄ the set µ(x̄)∩ (F ×T ) is a stable matching in
the market (F, T,�F )µ(x̄)∩(C×T ). To this end, we define four “conflict sets”20

which correspond to the 4 cases in the definition of a blocking pair (Definition
2 on page 7). We will argue that an assignment µ(x̄) ∩ (F × T ) is stable in the
market (F, T,�F )µ(x̄)∩(C×T ) if in each of these conflict sets there is at most one

19Roth and Sotomayor (1990), p. 69, use the same terminology.
20We learned about this way to implement conflicts into a mathematical program through

Yamada et al. (2002).
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element m with x̄(m) = 1.21

E1 := {(f, (f̃ , t̃)) ∈ F × (F × T ) | v((f, t̃)) > v((f̃ , t̃), t̃ ∈ Tf}
E2 := {(t, (f̃ , t̃)) ∈ T × (F × T ) | t �f̃ t̃}
E3 := {(t, f) ∈ T × F | t ∈ Tf}
E4 := {((f, t), (f̃ , t̃)) ∈ (F × T )× (F × T ) | t �f̃ t̃ ∧ v((f̃ , t)) > v((f, t))}.

To illustrate how these sets work, consider an element (m′,m′′) ∈ E2. By def-
inition of E2, m′ must be a task t̂ ∈ T . If in a configuration x̄ it holds that
x̄(m′) = 1, then by (5.2) for all pairs (a, t̂) ∈M it must hold x̄((a, t̂)) = 0. This
means that t̂ will be a vacant task in the matching µ(x̄). If at the same time
x̄(m′′) = 1, then by definition of E2, a pair m′′ = (f̃ , t̃) with t �f̃ t̃ is also in the

matching µ(x̄). Then according to case 2 in Definition 2, (f̃ , t) is a blocking pair
against µ(x̄) ∩ (F × T ) in the market (F, T,�F )µ(x̄)∩(C×T ) and f̃ would prefer

the vacant position t over the position t̃ to which f̃ is assigned under µ(x̄).
By analogous arguments, any elements (m′,m′′) ∈ E1, (m′,m′′) ∈ E3, and

(m′,m′′) ∈ E4 would lead to a blocking pair if x̄(m′) = x̄(m′′) = 1. To exclude
these possibilities, we set E := E1 ∪ E2 ∪ E3 ∪ E4 and demand

∀(m′,m′′) ∈ E : x(m′) + x(m′′) ≤ 1. (5.4)

We have now established the following result:

Proposition 2. A configuration x̄ of the variables x which fulfils the conditions
(5.2),(5.3), and (5.4) generates a set µ(x̄) with the following properties:

1. µ(x̄) is an assignment (by (5.2) and (5.3)).
2. The free assignment µ(x̄) ∩ (F × T ) is a stable matching in the marriage

market (F, T,�F )µ(x̄)∩(C×T ) (by (5.4)).

The missing part in the mathematical program is the objective function. In
the objective function of (4.1) there are two matchings µC and µF . The only
thing we have to do is to translate these two matchings into a configuration of
variables by rule (5.1). In this way, we straightforwardly obtain the objective
function:

max
x(m):m∈M∩(C×T )

min
x(m):m∈M∩(F×T )

∑
m∈M∩(A×T )

x(m) · v(m).

21One could also guarantee stability of µ(x̄)∩ (F ×T ) in the market (F, T,�F )µ(x̄)∩(C×T )

by restriction (3) of Vande Vate (1989), p. 148, or its generalisation of Rothblum (1992)
(see Lemma 1 on page 59). This would allow for simply setting M = A × T . However, the
difference is mainly notational, as the formulation of Rothblum (1992) makes use of sets
which are defined through the players’ preferences, similar to our conflict sets. The notation∑
j>mw

xmj in Rothblum (1992) denotes the summation over such a set, and his proof of
Lemma 1 directly refers to the four cases we state in Definition 2. As we want to point out the
connection between the mathematical program and Definition 2, we do not use the compact
notation of these papers.
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Putting everything together, the mathematical program which solves a SAAP by
finding a Nash equilibrium of the associated DCKG is given by:

max
x(m):m∈M∩(C×T )

min
x(m):m∈M∩(F×T )

∑
m∈M∩(A×T )

x(m) · v(m)

s.t. (5.5)

∀m ∈M : x(m) ∈ {0, 1}

∀t ∈ T :
∑

m∈Mt

x(m) = 1

∀a ∈ A :
∑
m∈Na

x(m) = 1

∀(m′,m′′) ∈ E : x(m′) + x(m′′) ≤ 1

A decomposition of the program (5.5) into first-level maximisation and second-
level minimisation can be found in Appendix B on page 18. For solution tech-
niques in (discrete) bilevel optimisation, we refer the reader to the overview in
Colson et al. (2007).

6. Conclusions

Our work introduces optimisation problems in which autonomous agents are
placed together with those fully controlled by a central planner. The autonomous
agents act to obtain their own individual goals. The central planner coordinates
the controlled agents with the aim to optimise the overall performance of the
system, while taking into account the behaviour of the self-motivated partic-
ipants. This scenario is typical in realistic economic systems, some of which
were outlined in Section 2. Specifically, we considered the Semi-Autonomous
Assignment Problem (SAAP) in which the controlled agents are assigned by
the central planner, while the free agents search for vacant tasks according to
their own preference orders over subsets of accessible tasks.

Clearly, the search process assumed for the free agents is not the only rea-
sonable way to put things. Indeed, there are many other possibilities for how
one could model the behaviour of the free agents. For example, many real-world
scenarios could be better described with a stochastic search process. One might
also consider search strategies taken from cognitive psychology, like the famous
satisficing heuristic of Simon (1957) or the take-the-best heuristic of Gigeren-
zer and Goldstein (1996). It may be a worthwhile effort to perform a similar
analysis like the one presented in this paper, but with alternative behavioural
assumptions for the free agents. Models which combine rational and boundedly
rational agents are very rare in the game theoretic literature,22 yet in reality an
increasing number of situations of this kind can be found. For example, in stock
exchange markets, humans trade simultaneously with computer programs. The
computers act extremely fast, without any psychological biases, and they have

22Indeed, we do not know of any papers on the subject.
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superior computing power – hence they could be considered to be fully rational
players.

Despite of its various reasonable alternatives, we want to stress that the
search process modelled in this article has some intriguing features. Firstly, it is
quite natural to assume that the free agents check for free tasks in order of their
preferences. Secondly, as we mentioned in Section 3, a result of McVitie and
Wilson (1971) implies that the order in which the free players approach tasks
and get deprived of tasks by other players does not influence the outcome of the
process. This gives our search process considerable robustness with regard to
many specific circumstances prevailing in real-life scenarios. Thirdly, in the de-
ferred acceptance algorithm of Gale and Shapley (1962) there is no incentive for
the proposing side, in our case the free agents, to misrepresent their preferences
(cf. Dubins and Freedman (1981), Roth (1982)). In our context, this means that
the free agents cannot improve their outcome by changing the order in which
they approach tasks. So even if free agents would have enough information and
computing power to act strategically, it would not be worthwhile to do this.
In contrast, alternative models of search behaviour would have to take care of
strategic manipulations on the free agents’ parts. Of course, this makes handling
our model merely convenient, yet does not say anything about the validity of
its assumptions.

Other modifications to our model come to mind. It may be interesting to
change the informational assumptions of the model. What if the productivi-
ties of the autonomous workers for different tasks is private knowledge of that
worker?23 Would there be a way to make the free agents reveal their private
information? Could they even be incentivised to pick the task which would be
best from the central planner’s point of view? Designing a transfer scheme to
achieve such goals would demand the free agents to be modelled with cardinal
preferences. This would reduce the robustness of the model but it might add
economically interesting dynamics similar to those which can be found in the
famous labour market adjustment models of Crawford and Knoer (1981) and
Kelso and Crawford (1982).

The idea of introducing autonomous agents in scenarios where the central
planner normally has full control is by no means limited to the allocation domain
considered here. In fact, many other standard problems can be extended to
include autonomous agents. Transportation or network flow with some transfers
performed by autonomous agents, knapsack where autonomous agents are able
to add their own items to the knapsack, and graph colouring with some nodes
coloured by the agents are just a few examples.
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Appendix A: Formal statement of the DAB algorithm

Here we will formally state the search process of the free agents which was
informally described in Section 3.

The search process of the free players coincides with the stable matching
algorithm of Gale and Shapley (1962) if the free agents stand for the men and
the tasks stand for the women. However, the algorithm is executed in a marriage
market in which all those tasks which were assigned to coordinated agents are
not available anymore. This idea is formalised below.

A coordinated assignment is a matching µC ⊆ C × T (no free player f is a
member of any pair). We denote by (F, T,�F )µC

a marriage market24 formed
by free agents and tasks in which those tasks which were matched under µC are
not available anymore. Formally:

(F, T,�F )µC
= (F, T \ {t | (c, t) ∈ µC},�).

The following algorithm is the deferred acceptance algorithm of Gale and Shap-
ley (1962) executed in the market (A, T,�F )µC

. The output matching µSAAP

of the algorithm is a feasible assignment µSAAP for the underlying SAAP. The
matching µF [µC ] := µSAAP \ µC is the free agent optimal stable matching in
the market (A, T,�F )µC

.25

24Marriage markets are formally defined on page 6.
25For details cf. Gale and Shapley (1962) and Roth and Sotomayor (1990), Theorem 2.12.,

p. 32.
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Deferred acceptance algorithm with blocked tasks (DAB)

Input:
A marriage market (A, T,�F )µC

.

Initialisation:
Set i := 0. For each f ∈ F , let there be a set C0(f) = ∅. Set µ0 := µC , i := i+ 1
and go to the main iteration.

Main iteration:
Define a set

µai := µi−1 ∪ {(f, t) ∈ F × T | t = max
�f

Tf \ Ci−1(f)}

Check: If µai is an assignment, stop the algorithm and set µSAAP := µai and
µF [µC ] := µSAAP \ µC . Otherwise, define

Ci(f) :=
Ci−1(f) ∪
{t ∈ Tf | (f, t) ∈ µai : ∃(f̂ , t) ∈ µai with v((f̂ , t)) > v((f, t)) for f̂ ∈ F}.

Remove (in an arbitrary order) all (f, t) from µai with t ∈ Ci(f) and denote the
resulting set by µi. Set i := i+ 1 and return to the start of the main iteration.

Lemma 1. At any stage j of the DAB-algorithm, t ∈ Cj(f) for f ∈ F implies
(f, t) /∈ µj.

Proof. If (f, t) ∈ µaj , then (f, t) gets removed from µaj at that same stage j and
the resulting matching is µj . However, if (f, t) /∈ µaj in the first place, then of
course (f, t) /∈ µj .

Lemma 2. Each execution of the DAB-algorithm stops after a finite number of
stages.

Proof. At any stage i ≥ 1 of the algorithm we have Ci−1(f) ⊆ Ci(f) for all
f ∈ F . We will show that at a stage i at which µai is no assignment, there is
at least one player f with Ci−1(f) ⊂ Ci(f) (strict inclusion). This concludes
the proof by a potential function argument. If at stage i the set µai is not
an assignment (and thus the algorithm has not stopped at the beginning of

stage i), there are two distinct pairs (f, t), (f̂ , t) ∈ µai ∩ F × T which share the

position t. Condition 3.1 (page 6) ensures v((f, t)) 6= v((f̂ , t)). W.l.o.g. assume

v((f, t)) > v((f̂ , t)). Then by definition of Ci(f̂) holds t ∈ Ci(f̂). We finish by

showing t /∈ Ci−1(f̂). By contradiction, assume t ∈ Ci−1(f̂). Then by Lemma

1, (f̂ , t) /∈ µi−1. As (f̂ , t) in µai , it must hold t = max�f̂
Tf̂ \ Ci−1(f̂). As we

assumed t ∈ Ci−1(f̂), this is impossible.

Lemma 3. For a given coordinated assignment µC , an execution of the DAB-
algorithm yields a unique output assignment µSAAP.
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Proof. At an arbitrary stage i of the algorithm, only the order of removal of
those pairs (f, t) with t ∈ Ci(f) from the set µai is not uniquely determined.
However, here it is clear that for a given position t, all pairs (f, t) will be removed

for which (f, t) 6= max(f̂ ,t)∈µa
i ∩F×T

v((f̂ , t)). So the order of removal does not

have any impact on the set µi, which is constructed on that stage.

Appendix B: Decomposition of the program (5.5) into first-level
and second-level optimisation problems

In this appendix we will explicitly state the first-level maximisation and the
second-level minimisation of (5.5) as two distinct programs. We denote those
variables x(m) for which m ∈ C×T by xc(m), variables x(m) for which m ∈ F×
T by xf (m), and variables x(m) for which m ∈ A∪T by xu(m). In the first level,
CP sets xc(·) to assign coordinated agents to tasks keeping in mind that in the
second level the free agents will follow DAB to allocate remaining tasks among
themselves. The latter generates a configuration of the variables xf (·). Let g(xc)
denote the value v(µF [µC ]), where µC is derived from the configuration of the
variables xc(·), and µF [µC ] is derived from the configuration of the variables
xf (·).

For each task (coordinated agent) we define the set of coordinated agents
(tasks) that it can be matched with:

Mc
t := {(a, t̂) ∈ C × T | t̂ = t}

N c
a := {(â, t) ∈ C × T | â = a}.

We do the same for free agents including the possibility for the task (agent) to
remain unmatched:

Mf
t := {t} ∪ {(a, t̂) ∈ F × T | t̂ = t}

N f
a := {a} ∪ {(â, t) ∈ F × T | â = a}.

First-level maximisation

max
xc(m):m∈C×T

g(xc) +
∑

m∈C×T
xc(m)v(m)

∀m ∈ C × T xc(m) ∈ {0, 1}

∀t ∈ T :
∑

m∈Mc
t

xc(m) ≤ 1 (B.1)

∀a ∈ C :
∑
m∈N c

a

xc(m) ≤ 1 (B.2)

The objective function consists of two terms: the value of the coordinated as-
signment and the value g(xc) of the tasks performed by the free agents. The
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constraints ensure the matching is valid. As noted before, DAB leads to the
least preferred stable matching for the tasks. So g(xc) can be computed by the
following integer program which chooses a stable matching with the lowest value.

Second-level minimisation

g(xc) = min
xf (m):m∈F×T

∑
m∈F×T

xf (m)v(m)

∀m ∈ (F × T ) ∪ F ∪ T : xf (m) ∈ {0, 1}

∀t ∈ T :
∑

m∈Mf
t

xf (m) = 1−
∑

m∈Mc
t

xc(m) (B.3)

∀a ∈ F :
∑
m∈N f

a

xf (m) = 1 (B.4)

∀(m′,m′′) ∈ E : xf (m′) + xf (m′′) ≤ 1 (B.5)

A reader may notice that the constraints ensuring the matching is valid are weak
in the first level (Equations B.1 and B.2) but strict in the second (Equations B.3
and B.4). A weak constraint in the first-level maximisation allows a task (or
an agent) to be unassigned, while a strict would not. In fact, free agents and
tasks unassigned after the first stage can remain unassigned in the second-level
problem, in which case the variable xf (m) | m ∈ F ∪T is set to one. Expanding
the set of second-level variables to include xf (m) | m ∈ F ∪ T enables a concise
representation of the conflict set constraint B.5.


